Copula Functions and A Application On Data

Ayşe Metin Karakaş -
642 786

Abstract


 

Copulas is known to provide on helpful tool for modelling dependence between random variables.In this paper we describe how may be used copula methodology for the dependence between random variables. In the first part of this paper we show properties of copula functions.In the second part of this paper, relationship between tempeature measurument of different four regions are modeled with copula functions and we are showed graphes changes dependent parameter of suitable functions.



Full Text:

XML


References


Abozou K. T., 2007. Copulas in Statistics, Msc Thesis, African Institute for Math.Sciences.

Alsina C. and Bonet E., 1979. On Sums of Unıformly Dıstrubuted Random Variables, Stochastıca, 3, 2 .7

Bouyé E., 2000. Copulas for Finance A Reading Guide and Some Applications Financial Econometrics, London.

De Matteıs R., 2001. Fiting Copulas To Data, Diploma thesis, Institute of Math. of Univesity of Zurich.

Genest, C., Rivest, L., 1993. Stat. inference procedures for bivariate archimedean copulas, Journal America Statistic Associative. 88, 1034-1043.

Gianfausto, S., Carlo D. M., Nathabandu T., Kottegoda and Renzo R., 2007. Extremes In Nature, Springer.

Joe, H., 1997. Multivariate Models and Dependence Concepts , Chapman & Hall,London.

Kotz S., Nadarajah S., 2000. Extreme Value Distributions Theory andApplications.

Kotz S., 2001. Correlation and Dependence, George Washington University, USA.

Nelsen R., 1998. An introduction to copulas, Springer.

Nelsena R. B, Quesada-Molina J., Rodriguez J. A U´beda-Flores L. M., 2006. On the construction of copulas and quasi-copulas with given diagonal Sect., Mathematics and Economics, 42, 473-483.

Shih J. H., Louis T.A., 1995. Inferences on the association parameter in copula models for bivariate survival data, Biometrics, 51, 1384, 1399.




 Abstracting & Indexing