ABSTRACT

Aim: The efficacy of erythropoietin (EPO) on wound healing has been shown before. There is limited data about the efficacy of EPO on fracture healing. In this study, the efficacy of EPO on closed forearm fracture healing is searched by an experimental model.

Material and method: Twenty eight rats were picked randomly and divided into EPO and Control groups. On the first day, fracture was performed on the right ulna and radius of all rats. 500 U/kg daily low dose EPO was administered for each rat in EPO group and the same volume of isotonic sodium chloride solution was given intraperitoneally in the control group for five days. Seven rats from each group were sacrificed at the end of the first week; the others were sacrificed at the end of the third week.

Results: At the end of the first week and third week, bone healing scores of EPO group is significantly higher than the control group according to the histological, clinic and radiologic analysis.

Conclusion: EPO could have positive effects on healing of forearm fracture on rats in acute and subacute period. Low dose EPO may be a new protective agent against delayed union or nonunion in the risk population to go or not to go to surgical treatment.

Key Words: Erythropoietin, fracture healing, rat.

ÖZET


Bulgular: Birinci ve üçüncü hafta sonunda kırık iyileşme skorları histolojik, radyolojik ve klinik olarak değerlendirildiğinde Eritropoetin grubunda Kontrol grubuna göre belirgin olarak daha yüksek olduğu sıantıtıldı.

Sonuç: Ratların kapalı önkönlere kırık iyileşmesi üzerine akut ve subakut peryotta eritropoetinin pozitif etkileri olabildi. Düşük doz eritropoetin kullanımı cerrahiye gidecek veya gitmeyecek olan riskli hasta gruplarında kaynamaya geçmekte veya kaynamamaya karşı koruyucu ajan olarak verilebilir.

Anahat kelimeler: Eritropoetin, kırık iyileşmesi, rat.

Introduction

Fracture healing is a physiologic process assisted by many organised cell and cell products. Biologic, mechanic and environmental conditions play effective role on bone metabolism. The blood supply around fractured bone and better fixation methods are known as main reasons for better fracture healing (1). Exact reason for inadequate bone healing remained unclear. Nonsteroid anti-inflammatory drug uptake is a reason for inadequate fracture healing like smoking especially in long bones by inhibition of angiogenesis (2).

EPO is the most responsible hormone on erthropoiesis during fetal, neonatal and adult life. Secretion of this hormone is tethered by tissue hypoxia. It is secreted against anemia and hypoxia (3). In clinical practice it is usually used in the treatment of anemia related with chronic kidney insufficiency and premature anemia. EPO has further been demonstrated to promote
angiogenesis and tethered to accelerate wound healing. It plays a role in wound healing by its proangiogenic effects (4).

There is limited data regarding its efficacy in fracture healing. Therefore the aim of this study was to investigate the efficacy of erythropoietin on fracture healing by using a closed radius and ulna fracture model on rats. Histologic, radiologic and clinic examination scores are used in the study from the literature as objective examination models (5-7).

Material and methods

All experiments were performed under protocols approved by the local animal use and care committee and complied with the standards in the Guide for the Care and Use of Laboratory Animals, prepared by the Institute of Laboratory Animal Resources and published by the National Academy Press.

Twenty eight rats were randomly divided into two groups as the EPO group and the control (saline) group. Fourteen rats were selected randomly for each group. The animals were kept in temperature-controlled rooms (24°C) on a 12-hour light-dark cycle with access to rodent chow and bottled tap water ad libidum. Rats stayed healthy throughout the study period. Rats were anesthetized by an intraperitoneal injection of 15 mg/100 bodyweight (bw) ketamine (Ketalar, 50mg/ml, Eczacıbaşı). Fracture was performed on the right ulna and radius of all rats by manual three point bending technique like in femur fracture model in rats (8). Fracture was corrected by radiography (Figure 1). The rats in the EPO group were treated with 500 U/kg (bw) of intraperitoneal EPO (9) (Eprex, Santa-Farma). Injections were started on the day of fracture (two hours fracture formation) and continued for five days. In control group, the same volume of isotonic sodium chloride solution was given intraperitoneally for five days. On the seventh day of experiment, radiographies of all the fractured extremities were recorded. Seven rats from each group were selected randomly and sacrificed. After clinical examinations of fractured bones and fracture lines, specimens were kept in a 10% phosphate buffered formalin solution for 24 hours. On the second day specimens were taken in formic aside solution for decalcification. At the end of the second day all specimens were washed by water and cleaned from formic aside. Two coronal plane sections for each fracture specimen were taken. One of them was embedded into a paraffin block and the other was kept in formaldehyde till the end of the study. For histologic studies 4-5 micron thicknesses of longitudinal sections in paraffin blocks including the site of callus formation between fractured bone sides were stained by hemotocilsen eosin. The same method was applied for the retained 14 animals at the end of the third week.

Histological examination was performed under light microscope by a pathologist. Callus tissue was assessed by the method of Hou et all (6) (Table 1). The radiologic examination and clinic assessment of the fracture callus was done by three orthopedists blinded to the treatment modality, according to the methods of Lane and Sandhu (7) (Table 2), and Dimar and friends (5) (Table 3), respectively.

Statistical Analyses

All values are given as mean ± standard deviation. Statistical Package for Social Sciences software (SPSS 15, Chicago, IL, USA) was used for analysis. Unpaired Student t test was used for group comparisons. Categorical data were compared with the chisquare test. Abnormally distributed data were evaluated using Mann Whitney U test. P value of <0.05 was considered significant.

Table 1: The numeric system used for histologic assessment.

<table>
<thead>
<tr>
<th>Histologic signs of fracture line</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrotic tissue</td>
<td>1</td>
</tr>
<tr>
<td>More fibrotic tissue and less cartilage tissue</td>
<td>2</td>
</tr>
<tr>
<td>Equal portions of fibrotic and cartilage tissues</td>
<td>3</td>
</tr>
<tr>
<td>More cartilage tissue and less fibrotic tissue</td>
<td>4</td>
</tr>
<tr>
<td>Cartilage tissue</td>
<td>5</td>
</tr>
<tr>
<td>More cartilage tissue and less immature bone tissue</td>
<td>6</td>
</tr>
<tr>
<td>Equal portions of cartilage and bone tissue</td>
<td>7</td>
</tr>
<tr>
<td>More immature bone tissue and less cartilage tissue</td>
<td>8</td>
</tr>
<tr>
<td>Immature fracture healing</td>
<td>9</td>
</tr>
<tr>
<td>Mature fracture healing</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2: The numeric system for radiologic assessment.

<table>
<thead>
<tr>
<th>Radiologic signs</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>No healing</td>
<td>0</td>
</tr>
<tr>
<td>Callus formation</td>
<td>1</td>
</tr>
<tr>
<td>Starting fractured bone healing</td>
<td>2</td>
</tr>
<tr>
<td>Disappearing of fracture line</td>
<td>3</td>
</tr>
<tr>
<td>Finishing fractured bone healing</td>
<td>4</td>
</tr>
</tbody>
</table>
Results
Mean body weight of the rats in the EPO group was 220 g and 210 g in the control group at baseline. At the end of the study, mean weight of rats in EPO group was increased 25 g whereas there was only 10 g of mean body weight increase in the control group. The fibrotic callus formation between the fractured bone sides in EPO group is larger than the Control group at the end of the first week. Because of the short period for fracture healing, the clinic assessment of fracture healing is not studied for the first week. According to the clinic assessment method of Dimar and friends, the mean numeric score was 1.14 ± 0.69 in control group and 1.86 ± 0.38 in EPO group at the end of the third week which was statistically significant (p<0.05).

Radiologic assessment is measured at the first week and at the end of the study according to the Lane and Sandhu method (Figure 2-6). The mean numeric score of radiologic fracture healing was 0.93± 0.73 in the control group and 1.50 ± 0.65 in the EPO group at first week which was statistically insignificant (p> 0.05). However, the mean score of radiologic fracture healing was 1.14 ± 0.69 in the control group and 2.29 ±0.49 in the EPO group at the third week which reached statistically significance (p< 0.05).

The numeric scores for histological assessment of fracture healing were studied according to Huo and friends at the end of first and third weeks. Mean score of histological fracture healing was 1.86 ± 0.69 in the control group and 2.86 ± 0.90 in the EPO group at the end of the first week. The difference was statistically significant (p<0.05). The mean score of histological fracture healing was 3.00 ± 0.82 in the control group and 4.86 ± 1.46 in the EPO group at the end of the third week which was again statistically significant (p<0.05).

Discussion
Fracture healing is a basic model of wound healing. Both of them are inflammation process. This study demonstrates the positive effect of EPO on closed forearm fracture healing on rats. We decided to take forearm fracture model instead of any other bones. As there is much more study about wound healing, this complex process has not known the real entities that affect fracture healing (10). We wanted to determine if EPO has positive effect on fracture healing. Histological, radiologic and clinical examination methods are used to evaluate the efficacy of EPO.

The exact mechanism of hypoxia-induced erythropoietin production has not been resolved yet. The oxygen receptors in or around the cells were supposed to be the main responsible mechanism. EPO receptors were found in brain, ovars, tubas and testicular tissues (11). Erythropoietin production is possibly related not only with the hormonal system, but also involves paracrine and otocrine systems. EPO was successfully used in experimental myocardial infarction (12), necrotisane enterocolitis.


