4000 SERİSİ ALÜMİNYUM LEVHALARIN TIG KAYNAĞINDA AKIM TÜRÜNÜN MİKROYAPI VE MEKANİK ÖZELLİKLERE ETKİSİ

Ahmet DURGUTLU
2.124 1.541

Öz


Bu çalışmada, AA 4000 serisi Al-Si alaşımı levhalar gazaltı kaynak yöntemlerinden olan TIG kaynak yöntemi ile alternatif ve darbeli akım kullanılarak birleştirilmişlerdir. Kullanılan akım türünün kaynaklı levhaların özelliklerine olan etkilerini görmek amacı ile birleştirilen numunelere mikroyapı, sertlik ve çekme testleri uygulanmıştır. Deneyler sonucunda, darbeli akımın ısı girdisini düşürdüğü, kaynak metali tanelerini incelttiği ve geleneksel alternatif akıma göre kaynak metali sertliğinde artışa neden olduğu belirlenmiştir. Birleştirilmiş levhalara uygulanan çekme testlerinde, darbeli akım ile birleştirilen numunelerin alternatif akıma nazaran daha yüksek çekme dayanımı gösterdikleri tespit edilmiştir.

Anahtar kelimeler


Alüminyum, TIG kaynağı, Akım türü, Mekanik özellikler

Tam metin:

PDF

Referanslar


P. Praveen, P.K.D.V. Yarlagadda, M.J. Kang,(2005). Advancements in pulse gas metal arc welding, Journal of Materials Processing Technology 164–165, 1113–1119.

Maddox SJ. (2003).Review of fatigue assessment procedures for welded aluminium structures. Int J Fatigue:1359–78.

V. Balasubramanian et al., (2008). Effect of pulsed current welding on fatigue behaviour of high strength aluminium alloy joints, Materials and Design 29, 492–500.

Gourd, M. L., (1995).Principles of welding technology, Third Edition, Edward Arnold, A Member of the Hodder Headline Group, London Melbourne Auckland, London, 87-128. Juang, S. C., Tarng Y. S., (2002). Process parameter selection for optimising the weld pool geometry in the tungsten inert gas welding of stainless steel, Journal of Materials Processing Technology, 122, 33-37.

Cary, H. B., (1981).Modern welding technology, Second Edition, AWS, 82-85.

Shelwatker DA, Madhusudhan Reddy G, Gokhale AA. (2002). Gas tungsten arc welding studies on similar and dissimilar combinations of Al–Zn– Mg alloy RDE 40 and Al–Li alloy 1441. Sci Technol Weld Joining: 352–61.

Kahraman N., Durgutlu A., Gülenç B., (2004). Investigation of the effect of Hydrogen addition to Argon shielding gas on weld zone morphology of TIG welded 316L stainless steel, Journal of polytechnic, 7-3, 223- 228.

T. Senthil Kumar, V. Balasubramanian, M.Y. Sanavullah, (2007). Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy, Materials & Design, 28-7, 2080-2092.

Kou S, Le Y. (1986).Nucleation mechanism and grain refining of weld metal.Weld J:65–

M.V. Suresh; B. Vamsi Krishna; P. Venugopal; K. Prasad Rao,(2004). Effect of pulse frequency in gas tungsten arc welding of powder metallurgical preforms, Science and Technology of Welding & Joining, 9-4, 362-368.

T. Senthil Kumar et al.,(2007). Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy, Materials and Design, 28, 2080–2092.

P.K. Ghosh, L. Dorn, Marc Hübner, V.K. Goyal,(2007). Arc characteristics and behaviour of metal transfer in pulsed current GMA welding of aluminium alloy, Journal of Materials Processing Technology, 194-(1-3), 163-175.

V Balasubramanian et al.,(2007). Effect of current pulsing on tensile properties of titanium alloy, J Mater Design, doi:10.1016/j.matdes.2007.07.007.

S. Babu, T. Senthil Kumar, V. Balasubramanian,(2008). Optimizing pulsed current gas tungsten arc welding parameters of AA6061 aluminium alloy using Hooke and Jeeves algorithm, Transactions of Nonferrous Metals Society of China, 18-5, 1028-1036.

Razal Rose et al.,(2012). Prediction and optimization of pulsed current tungsten inert gas welding parameters to attain maximum tensile strength in AZ61A magnesium alloy, Materials & Design, 37, 334-348.

S. Sundaresan et all.,(1999). Microstructural refinement of weld fusion zones in α–β titanium alloys using pulsed current welding, Materials Science and Engineering A, 262-1, 88P. Praveen, P.K.D.V. Yarlagadda, M.J. Kang,(2005). Advancements in pulse gas metal arc welding, Journal of Materials Processing Technology 164–165, 1113–1119.

Shuyan Zhang, Fusong Jiang, Wenbin Ding,(2008). Microstructure and mechanical performance of pulsed current gas tungsten arc surface engineered composite coatings on Mg alloy reinforced by SiCp, Mater. Sci. Eng. A, doi:10.1016/j.msea.2008.01.033.

P.K. Palani, N. Murugan,(2006). Selection of parameters of pulsed current gas metal arc welding, Journal of Materials Processing Technology,172, 1–10.

Li Laiping, Chen Shanben, Lin Tao,(2005). The modeling of welding pool surface reflectance of aluminum alloy pulse GTAW, Materials Science and Engineering: A, 394, 320-3

E.O. Correa, S.C. Costa, J.N. Santos,(2009). Studies on weldability of iron-based powder metal alloys using pulsed gas tungsten arc welding process, Journal of Materials Processing Technology, 209-8, 3937-3942.

M. Balasubramanian et al.,(2008).Optimizing pulsed current parameters to minimize corrosion rate in gas tungsten arc welded titanium alloy, The International Journal of Advanced Manufacturing Technology, doi: 10.1007/s00170-007-1233-3.

M. Balasubramanian et al.,(2008).A mathematical model to predict impact toughness of pulsed-current gas tungsten arc-welded titanium alloy, The International Journal of Advanced Manufacturing Technology, doi: 10.1007/s00170-006-0763-4.

Haiping Yu et al.,(2013). Mechanical property and microstructure of aluminum alloy-steel tubes joint by magnetic pulse welding, Materials Science and Engineering: A, 561, 2592

Durgutlu A.,(2007). Effect of Argon – Hydrogen mixture on the microstructure and mechanical properties of aluminum on TIG welding, Journal of Polytechnic, 10-3, 2712

Durgutlu A., Gülenç B., ve Tülbentçi K.,(1999). The effect of welding speed on the microstructure and penetration in arc welding, Turkish Journal of Engineering & Environmental Sciences, 23-4, 251-259.

Durgutlu A., Kahraman N., Gülenç B.,(2008). “The effect of pulsed current on microstructure, hardness, bending and tensile strength in TIG welding of Al-Si alloys”, Journal of polytechnic, 11-4, 339-344.