ÇOK AMAÇLI GENETİK ALGORİTMA YÖNTEMLERİNİN BAŞARIMININ BELİRLENMESİ İÇİN İKİ YENİ ÖLÇÜT ÖNERİSİ

Engin Ufuk Ergül
2.154 1.424

Öz


Genetik algoritmalar, çok amaçlı optimizasyon problemlerinin çözümünde kullanılan etkili yöntemlerdir. Çok amaçlı optimizasyon problemlerinin doğası gereği, bu problemleri çözebilecek birçok çok amaçlı genetik algoritma (ÇAGA) yöntemi önerilmiştir. Bu yöntemlerin, optimizasyon problemlerini ne kadar iyi çözdüğünün belirlenmesi için literatürde birçok başarım ölçütü önerilmiştir. Bu çalışmada, ÇAGA yöntemlerinin sıralama (puan atama) yeteneklerinin ölçülmesi için Ceza ve Ödül başarım ölçütleri önerilmektedir. Bu iki ölçüt ile bir ÇAGA yöntemi tarafından seçme mekanizmasına ne kadar nitelikli bilgi aktarıldığı sezgisel ve istatistiksel olarak tespit edilebilmektedir. Literatürde çok kullanılan SPEA yöntemi ile yeni önerilmiş DOPGA yöntemi, 4 farklı test fonksiyonu üzerinde çalıştırılmış ve sonuçlar Ceza ve Ödül ölçütleri kullanılarak değerlendirilmiştir.

Anahtar kelimeler


Genetik Algoritma, Optimizasyon, Başarım Ölçütü, Ceza, Ödül

Tam metin:

PDF

Referanslar


Coello, C. A. C., Lamont, G. B., Veldhuizen, D. A., (2007). Evolutionary Algorithms For Solving Multi-Objective Problems, Second Edition. Springer, New York, U.S.A.

Deb, K., (2001). Multiobjective Optimization Using Evolutionary Algorithms, Wiley, Chichester, U.K.

Coello Coello, C. A., (1999). A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques, Knowledge and Information Systems, 1(3), pp.269-308.

Ghosh A., Dehuri S., (2004). Evolutionary Algorithms for Multi-Criterion Optimization: A Survey, International Journal of Computing & Information Sciences, 2(1).

Schott, J. R., (1995). Fault Tolerant Design Using Single and Multi-Criteria Genetic Algorithms, Master Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Boston, USA.

Van Veldhuizen, D.A., (1999). Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations, PhD. Thesis, Air Force Institute of Technology, Dayton.

Zitzler, E., (1999). Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, Ph.D Thesis, Swiss Federal Institute of Technology, Switzerland.

Zitzler, E., Thiele, L., (1999). Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach, IEEE Transactions on Evolutionary Computation, 3(4), 257-271.

Zitzler, E., Thiele, L., Laumans, M., Fonseca, C. M., Fonseca, V. G., (2003). Performance Assesments of Multiobjective Optimizers: An Analysis and Review, IEEE Transactions on Evolutionary Computation, 7(2), 117-132.

Deb, K., Pratap, A., Agarwal., S., Meyarivan, T., (2002). A Fast and Elitist Multi- objective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6,182-197.

Van Veldhuizen, D.A., and Lamont G.B., (2000). Multiobjective Evolutionary Algorithms: Analyzing the State-of-the Art, Evolutionary Computation 7(3), 1-26.

Knowles J., Thiele L., and Zitzler E., (2006). A Tutorial on the Performance Assesment of Stochastic Multiobjective Optimizers, 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland, Revised Version.

Knowles, J.D., Corne, D.W., (2002). On Metrics for Comparing Nondominated Sets, Proceedings of the 2002 Congress on Evolutionary Computation, CEC '02, 1, 711-716.

Ergul, E.U., Eminoglu, I., (2014). DOPGA: A New Fitness Assignment Scheme for Multi-objective Evolutionary Algorithms, International Journal of Systems Science, 45(3), 407-426.

Fonseca, C.M., Fleming, P.J., (1993). Genetic Algorithms for Multi-objective Optimization: Formulation, Discussion and Generalization, In Proceedings of the Fifth International Conference on Genetic Algorithms, 416-423.

Chiu, S., (1994). Fuzzy Model Identification Based on Cluster Estimation, Journal of Intelligent & Fuzzy Systems, 2(3). Huband, S., Hingston, P., Barone, L., While, L., (2006). A Review of Multiobjective Test Problems and A Scalable Test Problem Toolkit, IEEE Transactions on Evolutionary Computation, 10(5), 1-30.