Thermodynamic Property Models for Unburned Mixtures and Combustion Gases

Lanzafame Rosario
Dipartimento di Ingegneria Industriale e Meccanica
Viale A. Doria, 6, 95125 Catania – Italy
rlanzafa@diim.unict.it

Messina Michele
Dipartimento di Ingegneria Industriale e Meccanica
Viale A. Doria, 6, 95125 Catania – Italy
mmessina@diim.unict.it

Abstract

New mathematical functions, with the functional form of a fifth order logarithmic polynomial, have been developed. These polynomials have been used to describe gases’ thermodynamic properties, and have been utilized for combustion processes, with “frozen composition” and “shifting equilibrium composition” evaluation. The logarithmic polynomials present the advantage of covering a wide range of temperatures with only a single mathematical function. The logarithmic polynomial coefficients have been evaluated through the least squares fit on the basis of experimental measurements (taken from scientific literature). The set of logarithmic polynomials gives the possibility of studying the combustion phenomena and allows for the description of specific heat at constant pressure, enthalpy, entropy and equilibrium constants for gases’ dissociation.

Keywords: Combustion, thermochemical dissociation, gases thermodynamic properties, fifth order logarithmic polynomials, internal combustion engine.

1. Introduction

Fifth order logarithmic polynomials have been implemented for the determination of gases’ thermodynamic properties. These functions have been used to evaluate “frozen composition”, “shifting equilibrium composition” and the dissociation equilibrium constants.

The polynomials have been calculated for isobaric specific heat, enthalpy, entropy and equilibrium constants. The polynomial coefficients for the isobaric specific heat have been computed for each single gas through the least squares method, and the coefficients for enthalpy and entropy are expressed as a combination of the previous ones.

The polynomial functions can be used in temperature ranges of practical interest (ICE applications, gas turbine applications, etc).

Logarithmic polynomial coefficients have been obtained by matching the thermodynamic properties data taken from the JANAF Thermochemical Tables (1971), Chase (1998), Gordon and McBride (1999), Gurvich et al. (1978) and Gurvich et al. (1989).

The isobaric specific heats have been calculated depending on temperature, and they have been compared with the experimental ones in order to evaluate the relative errors.

The logarithmic polynomials pointed out an elevate interpolation accuracy, the possibility of utilizing a single logarithmic polynomial for a wide temperature range.

Utilizing the logarithmic polynomials for the equilibrium constants, it is possible to evaluate the molar fraction of the gases constituting the products of combustion and the thermodynamic properties of the mixture.

In this formulation the mixing entropy has been taken into account for a correct evaluation of the mixture entropy. It is also possible to take into account the heat occulted during the dissociation phenomenon and the great influence
of thermochemical dissociation on mixture specific heat.

2. Thermodynamic Properties for a Single Gas

Logarithmic polynomials can be evaluated through the least squares method in order to reduce the percentage relative error, and to maximize the correlation factor (Milton, 1995).

The logarithmic polynomial specific heat at constant pressure is reported in Equation (1):

\[
\tilde{c}_p(T^*) = \sum_{i=0}^{5} a_i \left(\ln T^* \right)^i
\]

Integrating Equation (1) with respect to the temperature yields the enthalpy (Equation (2)).

\[
\tilde{h}(T^*) = \int_{T_0}^{T^*} \tilde{c}_p(T^*) \, dT^* = h_0(T^*) = h_0^0(T^*)
\]

where \(h_0(T^*) \) is the enthalpy of formation at \(T = T_0 = 298.15 \) K and \(h_0^0(T^*) \) is equal to zero at the reference temperature \(T^* = 1 \). All the \(b_i \) constants depend on the \(a_i \) coefficients. So the least squares method is applied only once to the experimental data on specific heat at constant pressure. The five order logarithmic polynomial for the twelve gases is able to cover, with only one mathematical formulation, the temperature range from 100 K to 5000 K with a correlation factor \(R^2 \) always greater than 0.99 (Lanzafame and Messina, 2000) (see TABLE I). The fifth order logarithmic polynomial for the twelve gases is able to cover, with only one mathematical formulation, the temperature range from 100 K to 5000 K with a correlation factor \(R^2 \) always greater than 0.99 (Lanzafame and Messina, 2000) (see TABLE I). The correlation factors and the correlation coefficients of the logarithmic polynomial were calculated for each gas at constant pressure.
factor compares the predicted data from mathematical functions with the experimental ones, and it varies from 0 to 1. If it is equal to 1, it means that a perfect correlation between preview data and experimental data exists (Milton, 1995). The relative errors (shown in Equation (11)), between experimental and simulated data, are very low (see Figure 1), especially considering the wide temperature range of interpolation (see Figure 1).

\[
\frac{\tilde{c}_p|_{\text{simulated}} - \tilde{c}_p|_{\text{experimental}}}{\tilde{c}_p|_{\text{experimental}}} \tag{11}
\]

If the range of temperatures is restricted to one of more practical interest (for example from 273 K to 3500 K for application inside ICE), the errors are notably reduced (see Figure 2).

For a complete description of all logarithmic polynomials, in TABLE II the enthalpy of formation and the entropy at the standard conditions (JANAF Thermochemical Tables, 1971) are reported.

Fifth order logarithmic polynomials have evidenced the possibility of utilizing a single polynomial to cover a wide range of temperatures, furnishing great accuracy. In Figure 3 an example is shown for hydrogen. In this figure a comparison between a traditional fifth order polynomial \((\tilde{c}_p(T) = \sum_{i=0}^{5} a_i T^i) \) and a fifth order logarithmic polynomial \((\tilde{c}_p(T) = \sum_{i=0}^{5} a_i (\ln T)^i) \) has been performed. The comparison shows that a logarithmic polynomial represents the best fit. The fifth order logarithmic polynomial covers with good accuracy the experimental data on the entire temperature range, while the traditional fifth order polynomial does not fit well the experimental data after \(T = 1500 \) K.

The same trend shown for this gas is also valid for all the other gases considered in this paper, and for this reason, they are not exposed.

In Figure 4 the comparison is performed between the logarithmic polynomial (six terms), other mathematical functions (Gordon and McBride, 1971, Chase, 1998) and experimental data (Gurvich et al., 1978). In Gordon and McBride (1971) two polynomials (the functional
form is $c_p(T) = \sum_{i=0}^{3} a_i(T/1000)^i$ - seven terms) have been used to cover the temperature range from 100 K to 5000 K (one from 100 K to 1000 K, and another from 1100 K to 5000 K), while, as reported by Chase (1998), three Shomate polynomials (the functional form is $c_p(T) = \sum_{i=0}^{3} a_i(T/1000)^i + a_4/(T/1000)^2$ - five terms) have been used to cover the temperature range from 298 K to 5000 K (one from 298 K to 1000 K, another from 1100 K to 2500 K, and the last from 2600 K to 5000 K). Although only one logarithmic polynomial has been used to cover the entire temperature range, the interpolation furnishes a very low error (see Figure 1), comparable with the errors from the other two interpolations. A direct comparison between the different polynomials used in Figure 4 doesn't represent a significant confrontation. In fact, starting from the same experimental data, a correct comparison between different polynomials must be effected between polynomials with the same numbers of order (fifth order with fifth order, sixth order with sixth order, etc.), and the same number of terms, because the precision of the fit depends on the order of the polynomial and on the number of terms.

4. Thermodynamic Models for an Unburned Mixture

In order to obtain the thermodynamic properties of the mixture for an unburned gas (Heywood, 1998), a summation of the thermodynamic properties of the gases constituting the mixture must be carried out, as shown (Bucker et al., 2003) in Equations (12) – (14):

\[
\tilde{c}_{p,\text{mix}}(T^*) = \sum_{k=1}^{n_{\text{gases}}} x_k \tilde{c}_{p,k}(T^*) \tag{12}
\]

\[
\tilde{h}_{\text{mix}}(T^*) = \sum_{k=1}^{n_{\text{gases}}} x_k \tilde{h}_k(T^*) \tag{13}
\]

\[
\tilde{s}_{\text{mix}}(T^*,p^*) = \sum_{k=1}^{n_{\text{gases}}} x_k \tilde{s}_k(T^*,p^*) + \Delta \tilde{s}_{\text{mix}} \tag{14}
\]

with the entropy of mixing

\[
\Delta \tilde{s}_{\text{mix}} = -\tilde{R} \sum_{k=1}^{n_{\text{gases}}} x_k \ln x_k \tag{15}
\]

In Equations (12) – (15) the subscript k denotes the single gas and x_k indicates the molar fraction of the single gas.

5. Dissociation and Equilibrium Constants

The natural logarithm of the equilibrium constant ($\ln K_p$) of a thermochemical dissociation reaction is defined as (Strehlow, 1985)

\[
\ln K_p = -\frac{1}{T_0} \sum_{i=1}^{s} \frac{v_i}{T} \tilde{g}_i(T^*,p^*) \tag{16}
\]

the subscript “i” refers to the i^{th} specie of the dissociation reaction, with the convention that v_i is negative for the dissociation reaction reactant species (the species that appears on the left in the reactions of TABLE III). The Gibbs function $\tilde{g}(T^*,p^*)$ is expressed in Equation (17).

\[
\tilde{g}(T^*,p^*) = \tilde{h}(T^*) - T_0 T^* \tilde{s}(T^*,p^*) \tag{17}
\]

Substituting Equations (9) and (10) in Equation (17) the Gibbs function assumes the functional form of Equation (18).

\[
\tilde{g}(T^*,p^*) = T_0 T^* \left\{ \sum_{j=0}^{l} g_j (\ln T^*)^j \right\} + g_7 + g_8 \tag{18}
\]

where g_j (for $0 \leq j \leq 8$) are the Gibbs function coefficients, defined below;

\[
g_j = b_j - c_j \quad (0 \leq j \leq 5; \ c_0=0)
\]

\[
g_6 = -c_6
\]

\[
g_7 = \tilde{R} \ln p^* - \tilde{s}(1, 1) \tag{19}
\]

\[
g_8 = b_0 + \Delta h_1^0
\]

Considering Equations (4) and (7) the g_j coefficients are valuable directly from the a_i coefficients and from thermodynamic data at reference conditions.

Evaluating the g_j coefficients, Equation (16) has been applied for the reaction in TABLE III, and a comparison has been effected with the data present in JANAF Thermochemical Tables (1971), and shown in Figure 5.

The comparison has evidenced the perfect matching between the logarithmic polynomial simulation and the data found in scientific literature (JANAF Thermochemical Tables, 1971).

6. Lean and Rich Combustion Applications

In the combustion process, the x_k can be evaluated applying the equilibrium thermodynamics equations (Olikara and Borman, 1975), based on atomic balance and equilibrium constants.
As an example of combustion phenomena, the oxidation of methane with technical air, with the following equivalence ratio \(\Phi = 0.8, 1.0, 1.2 \), has been considered. Furthermore the following combustion pressures \(p = 1, 10 \) and 100 bar have been considered.

The simulation results have been compared with those carried out from the CEA program (Chemical Equilibrium with Application), furnished by NASA (Gordon and McBride, 1994).

The enthalpy of mixture has been evaluated in Equation (20):

\[
 h_{\text{mix}}(T^\ast) = \sum_{k=1}^{n_{\text{gases}}} x_k \left(T^\ast \right) h_k(T^\ast) \tag{20}
\]

The molar fractions vary significantly with temperature (when it reaches high values about greater than 1500 K) and with pressure.

In Figures 6 and 7 the comparison between the simulation with the logarithmic polynomials and the data carried out from the CEA-NASA program is shown. In these figures the mixture enthalpy is evaluated, and it is possible to notice the good agreement with the CEA-NASA results. For the evaluation of mixture isobaric specific heat, it is necessary to take into account the variability with the temperature of the molar fractions. Applying the specific heat at constant pressure definition, it is possible to obtain:

\[
 \hat{c}_p, \text{mix} \left(T^\ast \right) = \frac{\Delta h_{\text{mix}}}{T^\ast} = \sum_{k=1}^{n_{\text{gases}}} x_k \hat{c}_p, k \left(T^\ast \right) + \sum_{k=1}^{n_{\text{gases}}} \frac{dx_k}{dT} \hat{h}_k \left(T^\ast \right) \tag{21}
\]

The shifting equilibrium value of \(\hat{c}_p, \text{mix,e} \) may be expressed as the sum of a “frozen” contribution, \(\hat{c}_p, \text{mix,f} \), and a “reaction” contribution \(\hat{c}_p, \text{mix,r} \) as follows:

\[
 \hat{c}_p, \text{mix} \left(T^\ast \right) = \hat{c}_p, \text{mix,e} = \hat{c}_p, \text{mix,f} + \hat{c}_p, \text{mix,r} \tag{22}
\]

with

\[
 \hat{c}_p, \text{mix,f} = \sum_{k=1}^{n_{\text{gases}}} x_k \hat{c}_p, k \left(T^\ast \right)
\]

\[
 \hat{c}_p, \text{mix,r} = \sum_{k=1}^{n_{\text{gases}}} \left(\frac{dx_k}{dT} \right) \hat{h}_k \left(T^\ast \right)
\]

The isobaric specific heat, represented in Figures 9 and 10, is shown in Equation (23)

\[
 c_p, \text{mix} \left(T^\ast \right) = \sum_{k=1}^{n_{\text{gases}}} x_k \hat{c}_p, k \left(T^\ast \right) + \sum_{k=1}^{n_{\text{gases}}} \frac{dx_k}{dT} \hat{h}_k \left(T^\ast \right) \tag{23}
\]

The last term in Equations (21) and (22) is always equal to zero for frozen composition.
The results are shown in Figures 8 and 9.

In Figure 8 the difference between the isobaric specific heat for frozen composition and for shifting equilibrium composition is shown. In Figure 9 a comparison has been performed between logarithmic polynomial and CEA-NASA results.

The comparisons are relative to CH₄ combustion at the pressure of 1 bar and 100 bar at the equivalence ratio Φ=1. For the evaluation of mixture entropy, the relationship in Equation (24) has been implemented.

\[
s_{\text{mix}}(T^{*},p^{*}) = \sum_{k=1}^{n_{\text{gases}}} x_k \left(T^* \right) \tilde{s}_k(T^*,p^*) + \Delta s_{\text{mix}} = \sum_{k=1}^{n_{\text{gases}}} x_k \left(T^* \right) M_k \tag{24}
\]

In Figures 10 and 11 the entropy of the mixture has been evaluated, and it is possible to notice the good agreement between the fifth order logarithmic polynomial and the CEA - NASA program.

7. Conclusion

Fifth order logarithmic polynomials have been implemented to study thermodynamic properties for unburned and burned mixtures. These polynomials have several advantages with respect to other models utilized in scientific literature. With one single polynomial it is possible to cover a wide range of temperatures; the logarithmic polynomial has very low errors in respect to experimental data. The logarithmic polynomials have been utilized to describe thermodynamic properties of gases, mixtures and equilibrium constants of practical interest for ICE combustion phenomena. The coefficients of the logarithmic polynomials have been evaluated through the least squares fit, on the basis of experimental data found in scientific literature. A comparison has been carried out between the simulated results and the most accredited CEA-NASA equilibrium code. The comparison has shown a perfect matching between the CEA-NASA program and the logarithmic polynomial simulation, and it has been implemented in the calculation of thermodynamic properties of the products of combustion of methane with technical air, at different fuel-to-air equivalence ratio and for different combustion pressures.
Nomenclature

- p_0: reference pressure 101325 Pa
- P: pressure $[\text{Pa}]$
- p^*: p/p_0
- T_0: reference temperature 298.15 K
- T: temperature $[\text{K}]$
- T^*: T/T_0
- a_i: coefficients of $c_p(T^*)$
- b_i: coefficients of $s(T^*, p^*)$
- c_i: molar specific heat at constant pressure $[\text{J mol}^{-1} \text{K}^{-1}]$
- c_p^*: specific heat at constant pressure $[\text{J kg}^{-1} \text{K}^{-1}]$
- \tilde{g}: Gibbs function $[\text{J mol}^{-1}]$
- \tilde{g}_0: Gibbs function coefficients
- \tilde{h}_0: molar enthalpy at $T=T_0$
- h: molar enthalpy $[\text{J mol}^{-1}]$
- ϕ: fuel to air equivalence ratio
- Δs_{mix}: entropy of mixing

Acknowledgments

The authors wish to thank the CEA authors for the use of the program.

References

TABLE I: LOGARITHMIC POLYNOMIAL COEFFICIENTS FOR $\bar{c}_p(T^*)$ (\bar{c}_p=[J/(mol K)])

(100\leq T\leq5000 K).

<table>
<thead>
<tr>
<th>Species</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2</td>
<td>0.06180721</td>
<td>-0.15731959</td>
<td>-0.46630845</td>
<td>1.94145005</td>
<td>2.70119522</td>
<td>29.51785250</td>
<td>0.99864</td>
</tr>
<tr>
<td>O</td>
<td>0.07027490</td>
<td>-0.31136053</td>
<td>0.28282306</td>
<td>0.69409831</td>
<td>-1.70433174</td>
<td>21.93889086</td>
<td>0.99943</td>
</tr>
<tr>
<td>N_2</td>
<td>0.21448719</td>
<td>-1.19546050</td>
<td>1.08309312</td>
<td>2.86102669</td>
<td>-0.21824417</td>
<td>28.87396814</td>
<td>0.99941</td>
</tr>
<tr>
<td>N</td>
<td>0.14239267</td>
<td>-0.47731848</td>
<td>0.14265183</td>
<td>0.65286173</td>
<td>-0.32933464</td>
<td>20.71144423</td>
<td>0.99447</td>
</tr>
<tr>
<td>H_2</td>
<td>-0.15719883</td>
<td>0.59756168</td>
<td>0.01975705</td>
<td>-0.16827168</td>
<td>1.14285222</td>
<td>28.45084504</td>
<td>0.99786</td>
</tr>
<tr>
<td>H</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>Ar</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>20.78600000</td>
<td>1.00000</td>
</tr>
<tr>
<td>H_2O</td>
<td>0.14904476</td>
<td>-1.35853914</td>
<td>2.19675399</td>
<td>4.39059147</td>
<td>0.30777852</td>
<td>33.36570240</td>
<td>0.99957</td>
</tr>
<tr>
<td>OH</td>
<td>0.03478011</td>
<td>-0.50597218</td>
<td>1.13636273</td>
<td>1.96908941</td>
<td>-2.38685363</td>
<td>29.88074938</td>
<td>0.99849</td>
</tr>
<tr>
<td>CO_2</td>
<td>0.09995132</td>
<td>0.00042527</td>
<td>-2.46535403</td>
<td>3.28070636</td>
<td>13.60436265</td>
<td>37.1027658</td>
<td>0.99997</td>
</tr>
<tr>
<td>CO</td>
<td>0.22518502</td>
<td>-1.18879042</td>
<td>0.88803413</td>
<td>2.99191804</td>
<td>0.18922297</td>
<td>28.92502641</td>
<td>0.99955</td>
</tr>
<tr>
<td>NO</td>
<td>0.22148616</td>
<td>-1.05253689</td>
<td>0.26215865</td>
<td>3.81009255</td>
<td>-0.18819240</td>
<td>29.74540076</td>
<td>0.99931</td>
</tr>
</tbody>
</table>

TABLE II. ENTHALPY OF FORMATION AND ENTROPY AT STANDARD TEMPERATURE AND PRESSURE ($T_0=298.15$ K; $P_0=101325$ Pa), FOR ALL THE 12 GASES.

<table>
<thead>
<tr>
<th>Species</th>
<th>Δh_f^0 [J/mol]</th>
<th>$s(l,l)$ [J/(mol K)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>-110530</td>
<td>197.54</td>
</tr>
<tr>
<td>CO_2</td>
<td>-393520</td>
<td>213.69</td>
</tr>
<tr>
<td>H_2O</td>
<td>-241830</td>
<td>188.72</td>
</tr>
<tr>
<td>H_2</td>
<td>0</td>
<td>130.57</td>
</tr>
<tr>
<td>OH</td>
<td>38990</td>
<td>183.6</td>
</tr>
<tr>
<td>O_2</td>
<td>0</td>
<td>205.04</td>
</tr>
<tr>
<td>O</td>
<td>249170</td>
<td>160.95</td>
</tr>
<tr>
<td>H</td>
<td>218000</td>
<td>114.61</td>
</tr>
<tr>
<td>N_2</td>
<td>0</td>
<td>191.5</td>
</tr>
<tr>
<td>NO</td>
<td>90290</td>
<td>210.65</td>
</tr>
<tr>
<td>N</td>
<td>472690</td>
<td>153.19</td>
</tr>
<tr>
<td>Ar</td>
<td>0</td>
<td>154.74</td>
</tr>
</tbody>
</table>

TABLE III. THERMOCHEMICAL DISSOCIATION REACTIONS.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>$\frac{1}{2} H_2 \rightarrow H$</td>
</tr>
<tr>
<td>(2)</td>
<td>$\frac{1}{2} O_2 \rightarrow O$</td>
</tr>
<tr>
<td>(3)</td>
<td>$\frac{1}{2} N_2 \rightarrow N$</td>
</tr>
<tr>
<td>(4)</td>
<td>$2H_2O \rightarrow 2H_2 + O_2$</td>
</tr>
<tr>
<td>(5)</td>
<td>$H_2O \rightarrow OH + \frac{1}{2} H_2$</td>
</tr>
<tr>
<td>(6)</td>
<td>$CO_2 + H_2 \rightarrow H_2O + CO$</td>
</tr>
<tr>
<td>(7)</td>
<td>$H_2O + \frac{1}{2} N_2 \rightarrow H_2 + NO$</td>
</tr>
</tbody>
</table>