Thermoeconomic Analysis of a Cogeneration System Integrated to a Solid Waste Incinerator

Márcio Higa, Júlio César Dainezi de Oliveira, Alexandre Marconi de Souza da Costa, Carlos Barros Jr
3.945 981

Abstract


In order to achieve satisfactory incineration, it is required that the combustion reaction occurs in high temperature, resulting in gaseous components with high exergetic potential that can be used for electromechanical power generation. This study makes an exergetic analysis, feasibility study and thermoeconomic evaluation for implanting a cogeneration system integrated to a solid waste incinerator from the Biotery located in the State University of Maringa. First and Second Laws of Thermodynamics are employed, by applying mass, energy, exergy and economic balances of the proposed system. Based on this evaluation it is possible to verify that the integration of a Rankine cycle using a micro-turbine of 123 kW with the incinerator is technically viable. The power generation costs was estimated ~11% lower than from the supplier and the operational costs of the incineration can either be decreased in ~ 22% to present investment return in up to 4.2 years. These cost reductions could make possible the continuous operation of the equipment, supplying conditions for the correct disposal of the solid waste generated by the university and Maringa city.

Keywords


Incineration; Cogeneration; Thermoeconomics; Exergy

Full Text:

PDF


DOI: http://dx.doi.org/10.5541/ijot.543

References


E. T. Oppelt, Incineration of hazardous waste: A critical review, JAPCA, 37, 558-586, 1987.

S. Udomsri, A. R. Martin, V. Martin, Thermally driven cooling coupled with solid waste-fired power plant: Application of combined heat, cooling and power in tropical urban areas, Applied Energy, 88, 1532-1542, 20

M. R. Holanda, J. A. P. Balestieri, Optimisation of environmental gas cleaning routes for solid waste cogeneration systems Part I – Analysis of waste incineration steam cycle, Energy Conversion and Management, 49, 791–803, 2008.

G. Tsatsaronis, T. Morosuk, D. Koch, M. Sorgenfrei, Understanding the thermodynamics inefficiencies in combustion processes, Energy, 62, 3–11, 2013.

A. Valero, M. Lozano, L. Serra, G. Tsatsaronis, J. Pisa, C. Frangopoulos, M. R. V. Spakovsky, CGAM problem: Definition and conventional solution, Energy, 19, 279-286, 1994.

A. Valero, M. Lozano, L. Serra, C. Torres, Application of the exergetic cost theory to the CGAM problem, Energy, 19., 365-381, 1994.

M. A. Lozano, A. Valero, The theory of exergetic cost, Energy, 18, 939-960, 1993.

G. Tsatsaronis, J. Piza, Exergoeconomic evaluation and optimization of energy systems - Application to the CGAM problem, Energy, 19, 287-321, 1994.

F. Petrakopoulou, Y. D. Lee, G. Tsatsaronis, Simulation and exergetic evaluation os CO2 capture in a solidoxide fuel-cell combined cycle power plant, Applied Energy, 114, 417-425, 2014.

A. Christidis, C. Koch, L. Pottel, G. Tsatsaronisi, The contribution of the heat storage to the profitable operation of combined heat and power plants in liberalized electricity markets, Energy, 41, 75-82, 2012.

F. Petrakopoulou, G. Tsatsaronis, T. Morosuk, A. Carassai, Conventional and advanced exergetic analyses applied to a combined cycle power plant, Energy, 41, 146-152, 2012.

T. Morosuk, G. Tsatsaronis, C. Zhang, Conventional thermodynamic and advanced exergetic analysis of a refrigeration machine using a voorhees compression process, Energy Conversion and Management, 60, 143151, 2012.

L. Serra, M. A. Lozano, J. Ramos, A. Ensinas, S. A. Nebra, Polygeneration and efficient use of natural resources, Energy, 34, 575-586, 2009.

M. A. Lozano, M. Carvalho, L. M. Serra, Operational strategy and marginal costs in simple trigeneration systems. Energy, 34, 2001-2008, 2009.

J. C. D. Oliveira, A. M. S. Costa, C. Barros JR., M. Higa, “Evaluation of Small-Scale Solid Waste Incinerator: Case Study” in ECOS2009: Proceedings of 22º International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems, Foz do Iguaçu-PR, Brazil, 2009.

L. Sallustio, E. Sciubba, Energy recovery from biomass: Process simulation and second law analysis of an anaerobic digester coupled with an internal combustion engine, Int. J. Thermodynamics, 10, 145– 154, 2013.

W. T. Tsai, Y. H. Chou, An Overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan, Renewable and Sustainable Energy Reviews, 10, 491–502, 2006.

M. Higa, A. M. S. Costa, J. C. D. Oliveira, C. Barros JR, “Study of Exergetic Viability for Steam Microturbine Integration in a Solid Waste Incinerator” in COBEM2009, Proceedings of 20º International Congress of Mechanichal Engineering. Gramado-RS, Brazil, 2009.

A. Bejan, G. Tsatsaronis, G., M. J. Moran, Thermal Design and Optimization, New York. John Wiley & Sons, 1996.

T. J. Kotas, The Exergy Method of Thermal Plant Analysis, London: Ed. Butterworths, 1985.

B. Linnhoff, S. Ahmad, Supertargeting: Optimum synthesis of energy management systems, J. Energy Resources Technology, 111, 121-130, 1989.

M. Higa, A. C. Bannwart, Avaliação energética em usinas de açşcar e álcool utilizando a análise pinch, Revista Ibero Americana de Ingeniería Mecânica, 9, 95101, 2005.

J. M. Smith, H. C. Van Ness, M. M Abbot, Introdução à Termodinâmica da Engenharia Química, 7ª edição, Rio de Janeiro: Editora LTC, 2007.

C. Barros Jr, Report: Plano de Atendimento aos Padrões de Emissões: Biotério Central, Universidade Estadual de Maringá, 2007.

K. McDonnell, J. Desmond, J. J. Leahy, R. HowardHildige, S. Ward, Behavior of meat and bonemeal/peat pellets in a bench scale fluidized bed combustor, Energy, 26, 81-90, 2001.

M. J. Moran, H. N. Shapiro, Princípios de Termodinâmica para Engenharia, 6ª edição, Rio de Janeiro: Editora LTC, 2009.

E. Bazzo, Geração de Vapor, 2ª edição, Florianópolis: Ed. UFSC, 1995.

D. Vlassov, Combustíveis, Combustão e Câmara de Combustão, Curitiba: Ed. UFPR, 2001.

B. L. D. De Angelis, A. C. F. Sampaio, O. G. Tudini, M. G. T. B. Assunção, G. De Angelis Neto, Avaliação das árvores de vias pşblicas da zona central de Maringá, estado do Paraná: Estimativa de produção de resíduos e destinação final, Acta Scientiarum Agronomy, 29, 133140, 2007.