A Note on the Use of Item Parceling in Structural Equation Modeling with Missing Data

Fatih ORÇAN, Yanyun YANG
2.249 481

Öz


Item parceling procedure may be applied to alleviate some difficulties in analysis with missing data and/or nonnormal data in structural equation modeling. A simulation study was conducted to investigate how item parceling behaves under various conditions in structural equation model with missing and nonnormal distributed data. Design factors included missing mechanism, percentage of missingness, distribution of item data, and sample size. Results showed that analysis conducted at the parcel level yielded lower model rejection rates than analysis based on the individual items, and the patterns were consistent across missing mechanism, percentage of missing, and distribution of item data. In addition, parcel-level analyses resulted in comparable parameter estimates to item-level analyses.


Tam metin:

PDF (English)


DOI: http://dx.doi.org/10.21031/epod.88204

Referanslar


Achenbach, T. M., Bernstein, A. & Dumenci, L.: DSM-oriented scales and statistically based syndromes for ages 18 to 59: Linking taxonomic paradigms to facilitate multitaxonomic approaches. Journal of personality assessment. 84, 49-63 (2005). doi:10.1207/s15327752jpa8401_10

Acock, A. C.: Working with missing values. Journal of Marriage and Family, 67, 1012-1028 (2005). doi:10.1111/j.1741-3737.2005.00191.x

Allison, P. D.: Missing data. California: Sage Publications (2002).

Allison, P. D.: Missing data techniques for structural equation modeling. Journal of Abnormal Psychology, 112, 545-557 (2003). doi:10.1037/0021-843X.112.4.545

Bandalos, D. L.: The effects of item parceling on goodness-of-fit and parameter estimate bias in structural equation modeling. Structural Equation Modeling, 9, 78-102 (2002). doi:10.1207/S15328007SEM0901_5

Bandalos, D. L.: The Use of Monte Carlo Studies in Structural Equation Modeling Research. In G. R. Hancock & R. O. Mueller (Eds.), Structural Equation Modeling: A Second Course (pp. 385-426). Greenwich, Connecticut: Information Age Publishing (2006).

Bandalos, D. L.: Is parceling really necessary ? A comparison of results from item parceling and categorical variable methodology. Structural Equation Modeling, 15, 211-240 (2008). doi:10.1080/10705510801922340

Bandalos, D.L., & Finney, S. J.: Item parceling issues in structural equation modeling. In G.A. Marcoulides & R.E. Schumacker (Eds.). New developments and techniques in structural equation modeling (pp.269-293). Mahwah, NJ: Lawrence Erlbaum Associates (2001).

Bentler, P.M.: Comparative Fit Indexes in Structural Models. Psychological Bulletin, 107, 238-246 (1990). doi:10.1037/0033-2909.107.2.238

Bernstein, I. H., & Teng, G.: Factoring items and factoring scales are different : Spurious evidence for multidimensionality due to item categorization. Psychological Bulletin, 105, 467-477 (1989). doi:10.1037/0033-2909.105.3.467

Bollen, K.A.: Structural equations with latent variables, Wiley, New York (1989).

Chen, G., & Astebro, T.: How to deal with missing categorical data: Test of a simple Bayesian method. Organizational Research Methods, 6, 309-327 (2003). doi:10.1177/1094428103254672

Chou, C.P., Bentler, P.M., & Satorra, A.: Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: a Monte Carlo study. British Journal of Mathematical and Statistical Psychology, 44, 347–357 (1991). doi:10.1111/j.2044-8317.1991.tb00966.x

Curran, P.J., West, S.G., & Finch, J.F.: The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16–29 (1996). doi:10.1037/1082-989X.1.1.16

Davey, A., & Savla, J.: Issues in evaluating model fit with missing data. Structural Equation Modeling, 12(4), 578-597 (2005). doi:10.1207/s15328007sem1204_4

Enders, C. K.: The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data. Psychological Methods, 6, 352-370 (2001). doi:10.1037/1082-989X.6.4.352

Enders, C. K.: The impact of missing data on sample reliability estimates: Implications for reliability reporting practices. Educational and Psychological Measurement, 64, 419-436 (2004). doi:10.1177/0013164403261050

Enders, C. K., & Bandalos, D. L.: The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 3, 430-457 (2001). doi:10.1207/S15328007SEM0803_5

Finney, S. J., & DiStefano, C.: Non-Normal and Categorical Data in Structural Equation Modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural Equation Modeling: A Second Course (pp. 269-314). Greenwich, Connecticut: Information Age Publishing (2006).

Fleishman, A. I.: A method for simulating non-normal distributions. Psychometrika, 43, 521-532 (1978). doi:10.1007/BF02293811

Hoogland, J. J. & Boomsma, A.: Robustness Studies in Covariance Structure Modeling: An Overview and a Meta-Analysis. Sociological Methods & Research, 26, 329-367 (1998). doi:10.1177/0049124198026003003

Hu, L., & Bentler, P. M.: Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55 (1999). doi:10.1080/10705519909540118

Hu, L., Bentler, P.M., & Kano, Y.: Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351-362 (1992).

Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F.: To parcel or not to parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9, 151-173 (2002). doi:10.1207/S15328007SEM0902_1

Matsunaga, M.: Item parceling in structural equation modeling: A primer. Communication Methods and Measures, 2, 260-293 (2008). doi:10.1080/19312450802458935

Meade, A. W., & Kroustalis, C. M.: Problems with item parceling for confirmatory factor analysis tests of measurement invariance of factor loadings. Paper presented at the 20th Annual Conference of the Society for Industrial and Organizational Psychology, Los Angeles, CA (2005).

Muthén, B., & Kaplan, D.: A comparison of some methodologies for the factor-analysis of non-normal Likert variables: A note on the size of the model. British Journal of Mathematical and Statistical Psychology, 45, 19 –30 (1992).

Muthén, B., & Muthén, L.: Mplus user's guide (6th eedition). Los Angeles, CA: Muthén & Muthén (1998-2008).

Nasser, F., & Takahashi, T.: The effect of using item parcels on Ad Hoc goodness-of-fit indexes in confirmatory factor analysis : An example using Sarason’s reactions to tests. Applied Measurement in Education, 16, 75-97 (2003). doi:10.1207/S15324818AME1601_4

Nasser, F., & Wisenbaker, J.: A Monte Carlo study investigating the impact of item parceling on measures of fit in confirmatory factor analysis. Educational and Psychological Measurement, 63, 729–757 (2003). doi:10.1177/0013164403258228

Peugh, J. L., & Enders, C. K.: Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525-556 (2004). doi:10.3102/00346543074004525

Plummer, B. A.: To parcel or not to parcel: The effects of item parceling in confirmatory factor analysis. Unpublished doctoral dissertation, University of Rhode Island (2000).

Sass, D. A., & Smith, P. L.: The effects of parceling unidimensional scales on structural parameter estimates in structural equation modeling. Structural Equation Modeling, 13, 566-586 (2006). doi:10.1207/s15328007sem1304_4

Schafer, J. L., & Graham, J. W.: Missing data : Our view of the state of the art. Psychological Methods, 7, 147-177 (2002). doi:10.1037/1082-989X.7.2.147

Signorella, M. L., & Cooper, J. E.: Relationship suggestions from self-help books: Gender stereotyping, preferences, and context effects. Sex Roles, 65, 371-382 (2011). doi:10.1007/s11199-011-0023-4

Steiger, J. H., & Lind, J. C.: Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA (1980).

Sterba, S.K.: Implications of parcel-allocation variability for comparing fit of item-solutions and parcelsolutions. Structural Equation Modeling, 18, 554-577 (2011).

Sterba, S.K. & MacCallum, R.C. Variability in parameter estimates and model fit across repeated allocations of items to parcels. Multivariate Behavioral Research, 45, 322-358 (2010).

Yang, C., Nay, S., & Hoyle, R. H.: Three approaches to using lengthy ordinal scales in structural equation models: Parceling, latent scoring, and shortening scales. Applied Psychological Measurement, 43, 122-142 (2010). doi:10.1177/0146621609338592

Yoder, J. D., Snell, A. F., & Tobias, A.: Balancing multicultural competence with social justice: Feminist beliefs and optimal psychological functioning. The Counseling Psychologist, 40, 1101-1132 (2012). doi:10.1177/0011000011426296




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.