DAYANIKLİ AYRAN ÜRETİMİNDE PEKTİN KULLANIM OLANAKLARI ÜZERİNE BİR ARAŞTIRMA

A STUDY ON THE UTILIZATION OF PECTIN IN MANUFACTURE OF LONG-LIFE AYRAN

Metin ATAMER, Asume GÜRSEL, Balcır TAMUÇAY, Nurşen GENÇER, Gönlül YILDIRIM,
Safiha ODABAŞI, Ebru KARADEMİR, Ebru ŞENEL, Seval KIRDAR
Ankara Üniversitesi Ziraat Fakültesi Süt Teknolojisi Bölümü, ANKARA

ÖZET: Bu çalışmada, "Dayanıklı Ayran" üretiminde pektin'in farklı kullanım oranları denenmiş ve olde edilen alicantan bazı kalite kriterleri, geleneksel yöntemle üretilen alicantan karşılaştırmalı olarak incelenmiştir. Pektin kullanım oranlarının belirlenmesinde literatürde verilen değerler esas alınmıştır.

Ayran örnekleri, yoğunlaştır (I) geleneksel yöntemle, ve (II) %0.2, (III) %0.4, (IV) %0.6 ve (V) %0.8 oranlarında pektin ilavesiyle üretilmiştir. Geleneksel yöntemi üretilen, yoğunlaştır (I) endüstriye uygun tuz ve su ilavesiyle gerçekleştilmiştir, diğer örneklerin üretiminde ise yukarıda oranları belirtilen pektin ve İlk tuz ve suyünün karışımından yararlanılmıştır. İzleyen aşamada, pektin katkıda örneklerine homojenleştirmeyi (150-200 kg/c2, 50°C) ve url içi (60-65°C/5-10 dakika) uygulamış, daha sonra, bütün örnekler aynı koşularda ambalajlanmıştır. Ayran örneklerinde, depolamanın 1., 15., 30., 45., ve 60. günlerinde, titrasyon asıtı, pH, lactik asit, asetaldheyde, tirozin, viskozite ve serum ayrıması testleri yapılmış, ayrıca toplam ve kollomb grubu mikroorganizmaları maya-kaf soyu saptanmış ve duyarıl değerlerde tabi tutulmuştur.

Dayanıklı Ayran üretiminde, pektin kullanım oranlarının örneklerin pH ve lactik aset içerikleri üzerine etkisini %0.05 düzeyinde (p=0.05) olduğu, ancak depolamanın farklı dönemlerinde titrasyona etkisi görülmüştür. Lactik aset, asetaldheyde ve viskozite değerleri üzerine önemli (p=0.05) bir etki yaratmış olup, bu durumun önemli bir serüven ayrıması gibi الجانبية بال бизнес وال التجارية. ناقشت الدراسة يستخدمية لـ "اليوران الطويل المدة" في جميع الظروف، وكذلك نسب التحليل الكيميائي للمنتجات النهائية الشابين مع ذلك من طريقة صنعه، وأيضاً اكتشاف النسبة المئوية اليدوية والأدوات المخصصة لـ تحليل الحمض. لاستخدامات إنارة الوضاء وعدد باستثناء أنبوب التبييض والشامبو، وتم التحقق من النتائج في الأيام 1, 5, 30, 45 و 60. النتائج الجودية واللذيذة واعدة، وسوف يثير الاهتمام في الصناعة. في بعض الحالات، فوائد الإنتاج، وتستخدم في الصناعة، وتتطلب القدرات على زيادة الإنتاج، وتتطلب القدرات على زيادة الإنتاج. تستخدم الإنتاج في الصناعة، وتتطلب القدرات على زيادة الإنتاج، وتتطلب القدرات على زيادة الإنتاج. تستخدم الإنتاج في الصناعة، وتتطلب القدرات على زيادة الإنتاج، وتتطلب القدرات على زيادة الإنتاج. تستخدم الإنتاج في الصناعة، وتتطلب القدرات على زيادة الإنتاج، وتتطلب القدرات على زيادة الإنتاج. تستخدم الإنتاج في الصناعة، وتتطلب القدرات على زيادة الإنتاج، وتتطلب القدرات على زيادة الإنتاج.
Ayrıntı

Çeşitli fermentte ürünlerde pektin kullanım oranı %0.02-0.7 arasında değişimdektedir (ANONYMOS, 1987; RASIC ve KURMANN, 1978; TAMIME ve ROBINSON, 1985). Ancak aynıda optimum kullanım oranını belirlemeye yönelik çalışma yapılmamıştır. Ürün bazıında optimum oranın saştandığı genelliktedir. Çünkü optimum orandndan daha fazla miktarda stabilizatör kullanımı tat ve aromayı maskelemesinin yanı sıra, protein agregasyonundan kaynaklanan pihtılı bir yapı da oluşmaktadır. Bu orandandn daha az miktarda stabilizator kullanımı ise, beklelen olumlu değişmeleri meydana getireılmektedir.

MATERİAL VE METOT

Material

Araştırılmand, hammadde yoğunun üretimi için A.Ü. Ziraat Fakültesi Süt Teknolojisi Bölümü Eğitim Araştırıma ve Uygulama İşletmesine gelen sütlerden yararlanılmıştır. Starter kültür olarak DVS formunda Yo-Flex "YC-350" yoğun kültür (Chr. Hansen's Laboratorium, Copenhagen/Denmark), stabilizatör olarak "Mexpectin RS 450" (Grindsted/Denmark) isimli ticari ürün kullanılmıştır.

Metot

Ayrancı yapımında kullanılan yoğun ATAMER ve SEZGİN (1987)'e göre üretilmiştir. Ancak, pektin ve proteinler arasındaki interaksyonun pH 3.8-4.2 arasında gerçekleşmesi nedeni ile yoğunun inkübasyonuna yaklaşık pH 4.0 değerinde son verilmiştir. Yoğun, bir gece buzulda (4-5 C'de) beklelildikten sonra 5 kisma ayrılmış ve ilk kısım geleneksel yöntemle ayran üretiminde kullanılmıştır. Dayanıklı ayran örneklerinin üretiminde, pektin, ıslanabilirliği artırılm için önce tuz ile karıştırlarak suya ilave edilmiştir. Bu şekilde elde
edilen karışım yükseğe devirilerek karıştırılır (Ultra Turrax, Janke&Kunkel/Almanya) ile karıştırılduktan sonra 80°C'ye kadar ısıtularak tam bir çözünme sağlanmıştır. Karışım tamamen çözündükten sonra yoğurtlara ilave edilmiştir. Daha sonra Şekil 1'de gösterilen işlem aşamaları izlenerek dayanıklı aıranıların üretilmesi gerçekleştirilmiştir. Üretime 10, 15, 30, 45 ve 60. günlerde analizler yapılmıştır. Deneme dört teker teker yürütülmuştur.

<table>
<thead>
<tr>
<th>Geleneksel aıran</th>
<th>Pektin</th>
<th>katlıti</th>
<th>dayanıklı aıranlar</th>
</tr>
</thead>
<tbody>
<tr>
<td>% 0.5 tuz, 450.0 su ilavesi</td>
<td>% 0.5 tuz, % 0.2 stabilizator, % 50.0 su ilavesi</td>
<td>% 0.5 tuz, % 0.4 stabilizator, % 50.0 su ilavesi</td>
<td>% 0.5 tuz, % 0.6 stabilizator, % 50.0 su ilavesi</td>
</tr>
</tbody>
</table>

Karıştırma

Ön ısıtma (50°C)

Homogenizasyon (150-200 kg/cm²)

Lai ışık (60-65°C/5-10 dk.)

Asepistik ambalajlama

Asepistik ambalajlama

Soğutma (4-5°C)

Depolama

Şekil 1. Geleneksel ve dayanıklı aıran örneklerinin üretim aksı diyagramı.

Uygulanabilir analizler

BULGULAR VE TARTIŞMA

Hammadde süt ve yoğurduğun genel nitelikleri Çizelge 1'de, aıran örneklerinin genel nitelikleri de Çizelge 2'de verilmiştir.
Çizelge 1. Çiğ Sütün ve Yoğurdun Gemi Nitelikleri

<table>
<thead>
<tr>
<th>Nitelikler</th>
<th>Çiğ Süt</th>
<th>Yoğurt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titrasyon asitliği (°SH)</td>
<td>6.70 ± 0.179</td>
<td>59.00 ± 2.330</td>
</tr>
<tr>
<td>PH</td>
<td>6.68 ± 0.032</td>
<td>3.97 ± 0.035</td>
</tr>
<tr>
<td>Yağ (%)</td>
<td>3.45 ± 0.180</td>
<td>3.30 ± 0.170</td>
</tr>
<tr>
<td>Toplam kurumadde (%)</td>
<td>11.47 ± 0.187</td>
<td>14.65 ± 1.080</td>
</tr>
<tr>
<td>Özug undeniable</td>
<td>1.030 ± 0.001</td>
<td>2)</td>
</tr>
<tr>
<td>Kül miktan (%)</td>
<td>0.736 ± 0.029</td>
<td>2)</td>
</tr>
<tr>
<td>Laktik asit (%)</td>
<td>2)</td>
<td>0.920 ± 0.029</td>
</tr>
<tr>
<td>Tirozin (mg/g)</td>
<td>2)</td>
<td>0.225 ± 0.011</td>
</tr>
<tr>
<td>Asetaldehit (ppm)</td>
<td>5.230 ± 0.416</td>
<td></td>
</tr>
<tr>
<td>Toplam bakteri (log cfu/g)</td>
<td>2)</td>
<td>2.63</td>
</tr>
<tr>
<td>Maya küf (log cfu/g)</td>
<td>2)</td>
<td>3)</td>
</tr>
<tr>
<td>Koliform (log cfu/g)</td>
<td>2)</td>
<td>0</td>
</tr>
</tbody>
</table>

1) Çizelgedeki değerler dört tekrerleştiri ortalamadasır.
2) Analiz yapılmıştır. 3) Koloni gelişimi görülmemiştir.

Çizelge 2. Ayran Örneklerinin Kurumadde, Yağ, Özug undeniable ve Kül İçerikleri

<table>
<thead>
<tr>
<th>Deneme</th>
<th>Nitelikler</th>
<th>% Yağ (%)</th>
<th>% Kurumadde (%)</th>
<th>% Özug undeniable (g/cm³)</th>
<th>% Kül (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geleneksel</td>
<td></td>
<td>1.52 ± 0.017</td>
<td>7.40 ± 0.590</td>
<td>1.0279 ± 0.003</td>
<td>1.195 ± 0.069</td>
</tr>
<tr>
<td>% 0.2 pektin katkıları</td>
<td></td>
<td>1.52 ± 0.017</td>
<td>7.35 ± 0.500</td>
<td>1.0234 ± 0.001</td>
<td>1.140 ± 0.062</td>
</tr>
<tr>
<td>% 0.4 pektin katkıları</td>
<td></td>
<td>1.46 ± 0.088</td>
<td>7.96 ± 0.370</td>
<td>1.0263 ± 0.001</td>
<td>1.127 ± 0.071</td>
</tr>
<tr>
<td>% 0.6 pektin katkıları</td>
<td></td>
<td>1.56 ± 0.088</td>
<td>8.00 ± 0.320</td>
<td>1.0263 ± 0.001</td>
<td>1.133 ± 0.057</td>
</tr>
<tr>
<td>% 0.8 pektin katkıları</td>
<td></td>
<td>1.56 ± 0.033</td>
<td>8.24 ± 0.300</td>
<td>1.0278 ± 0.001</td>
<td>1.144 ± 0.057</td>
</tr>
</tbody>
</table>

1) Çizelgedeki değerler dört tekrerleştiri ortalamadasır.

Ayran örneklerinin depolama süresince titrasyon asitliği, pH, laktik asit, tirozin, asetaldehit, serum ayrılması ve viskozite değerlerinde gözlenen değişimler Çizelge 3 de verilmiştir.

Farklı oranda pektin ilavesinin örneklerin titrasyon asitliği üzerine etkisi, depolamanın 1., 15., 30., günlerinde önemsez (p>0.05), 45. ve 60. günlerinde ise önemli (p<0.05) bulunmaktadır. Çizelge 3 incelendiğinde, titrasyon asitliğinin geleneksel yöntemle ölçülen ayarlandığı diğer örneklerden önemli düzeyde farklı olduğu görülmektedir. Depolama süresince tüm örneklerde titrasyon asitliğinin arttığı teşvik edilmiştir. Starter kültürlerin aktivitelerine bağlı olarak titrasyon asitliğinin arttığı başka araçtırıcılar tarafından da belirtilmiştir (KULI 1982; ABOU-DAWOOD ve ark. 1993, ERGÜLLÜ ve DEMİROL, 1983). Araştırılarda, geleneksel ayran örneğinde 9.98°SH birimi artış gözlenirken, diğer örneklerde bu artışın 6.50-6.94°SH birimi arasında değiştiği belirlenmiştir. Söz konusu farklılığın nedeni, katkılı örneklerin üretiminde ısı uygulamanının yer almasına bağlı olarak gerçekleşen bakteri reddüksiyonudur.

Ayran örneklerinin pH değerleri üzerinde pektin kullanım oranları, depolamanın tüm dönemde istatistiksel olarak önemli bir etki yaratmasıdır (p>0.05). Depolama süresinde örneklerin pH değerleri giderek azalmış ve bu azalmanın 0.20-0.36 pH birimi arasında değiştiği bulunmuştur (Çizelge 3). En fazla değişim, pektinin %0.8 oranında katıldığı ayran örneklerinde, en az değişim geleneksel yöntemle ölçülen örnek meydana gelmiştir. Bu durum muhtemelen, en yüksek oranda pektin içeren dayanıklı ayran örneklerinde, enzimatik aktive sonucu açığa çıkan eserleşmiş asit gruplarının (MAY, 1997) diğer örneklerden daha fazla olmasına neden olmuştur.

Deneme örneklerinin 60 günlük depolama periyodunda laktik asit içerikleri %0.583-0.676 arasında değişim göstermştir (Çizelge 3). Ayranların laktik asit içerikleri üzerinde pektin kullanım oranlarının etkisi önemli bulunmaktadır (p<0.05). Laktik asit içeriği, depolama süresi boyunca tüm örneklerde artmıştır. Fermente ürünlerin laktik asit içeriklerinin depolama süresince arttığı ATAMER ve SEZGİN (1987) ile SEZGİN ve ark. (1988) tarafından yapılan çalışmalar da daşanmıştır. Depolama en fazla değişim geleneksel yöntemle ölçülen ayran örneğinde görülür. Bunun nedeni, söz konusu örneğin bakteri içeriğinin diğer örneklerden daha yüksek olmasıdır.
<table>
<thead>
<tr>
<th>Nitelik</th>
<th>Depolama süresi (gün)</th>
<th>Geleneksel</th>
<th>% 0.2 pektin katkı</th>
<th>% 0.4 pektin katkı</th>
<th>% 0.6 pektin katkı</th>
<th>% 0.8 pektin katkı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titrasyon asitliği ("SH")</td>
<td>1</td>
<td>34.28 ± 1.43</td>
<td>34.22 ± 3.81</td>
<td>35.39 ± 3.14</td>
<td>35.38 ± 3.39</td>
<td>36.07 ± 3.38</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>36.27 ± 2.27</td>
<td>35.23 ± 3.31</td>
<td>37.23 ± 3.14</td>
<td>36.93 ± 3.01</td>
<td>37.21 ± 3.32</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>37.88 ± 2.69</td>
<td>36.09 ± 3.38</td>
<td>37.39 ± 3.13</td>
<td>37.93 ± 3.13</td>
<td>37.57 ± 3.29</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>38.81 ± 2.87</td>
<td>36.40 ± 3.60</td>
<td>37.81 ± 3.34**</td>
<td>37.58 ± 3.28*</td>
<td>37.76 ± 3.34**</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>42.26 ± 5.60*</td>
<td>41.04 ± 7.16*</td>
<td>42.09 ± 6.11**</td>
<td>42.32 ± 6.15**</td>
<td>42.70 ± 6.75**</td>
</tr>
<tr>
<td>pH</td>
<td>1</td>
<td>3.89 ± 0.03</td>
<td>3.92 ± 0.05</td>
<td>3.94 ± 0.03</td>
<td>3.98 ± 0.05</td>
<td>3.86 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.83 ± 0.07</td>
<td>3.82 ± 0.03</td>
<td>3.81 ± 0.04</td>
<td>3.80 ± 0.03</td>
<td>3.76 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.78 ± 0.02</td>
<td>3.77 ± 0.05</td>
<td>3.76 ± 0.06</td>
<td>3.75 ± 0.06</td>
<td>3.73 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>3.76 ± 0.01</td>
<td>3.74 ± 0.04</td>
<td>3.74 ± 0.05</td>
<td>3.72 ± 0.04</td>
<td>3.69 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>3.69 ± 0.06</td>
<td>3.66 ± 0.01</td>
<td>3.65 ± 0.03</td>
<td>3.64 ± 0.03</td>
<td>3.50 ± 0.11</td>
</tr>
<tr>
<td>Laktik asit (%)</td>
<td>1</td>
<td>0.583 ± 0.04*</td>
<td>0.601 ± 0.04</td>
<td>0.616 ± 0.058</td>
<td>0.617 ± 0.064</td>
<td>0.634 ± 0.050</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.594 ± 0.04</td>
<td>0.607 ± 0.04</td>
<td>0.620 ± 0.055</td>
<td>0.621 ± 0.062</td>
<td>0.640 ± 0.046</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.613 ± 0.04</td>
<td>0.611 ± 0.04</td>
<td>0.627 ± 0.058</td>
<td>0.627 ± 0.058</td>
<td>0.649 ± 0.048</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.654 ± 0.02</td>
<td>0.639 ± 0.053</td>
<td>0.632 ± 0.068</td>
<td>0.651 ± 0.050</td>
<td>0.676 ± 0.055</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0.671 ± 0.02</td>
<td>0.625 ± 0.050</td>
<td>0.638 ± 0.065</td>
<td>0.653 ± 0.056</td>
<td>0.676 ± 0.055</td>
</tr>
<tr>
<td>Tirozin (mg/g)</td>
<td>1</td>
<td>0.152 ± 0.019</td>
<td>0.141 ± 0.017</td>
<td>0.150 ± 0.033</td>
<td>0.170 ± 0.049</td>
<td>0.170 ± 0.031</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.154 ± 0.021</td>
<td>0.157 ± 0.027</td>
<td>0.174 ± 0.035</td>
<td>0.187 ± 0.044</td>
<td>0.189 ± 0.048</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.184 ± 0.024</td>
<td>0.193 ± 0.019</td>
<td>0.192 ± 0.031</td>
<td>0.198 ± 0.050</td>
<td>0.199 ± 0.046</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.203 ± 0.020</td>
<td>0.201 ± 0.023</td>
<td>0.225 ± 0.029</td>
<td>0.238 ± 0.041</td>
<td>0.250 ± 0.033</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0.226 ± 0.030*</td>
<td>0.220 ± 0.021*</td>
<td>0.248 ± 0.025**</td>
<td>0.269 ± 0.041**</td>
<td>0.270 ± 0.032**</td>
</tr>
<tr>
<td>Asetaldelit (ppm)</td>
<td>1</td>
<td>7.62 ± 0.57</td>
<td>5.31 ± 1.20</td>
<td>5.78 ± 0.90</td>
<td>7.38 ± 1.59</td>
<td>7.52 ± 1.17</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>6.00 ± 1.11</td>
<td>4.44 ± 0.69</td>
<td>5.30 ± 1.05</td>
<td>5.59 ± 1.22</td>
<td>6.14 ± 1.04</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.44 ± 1.02</td>
<td>4.11 ± 0.69</td>
<td>4.64 ± 0.79</td>
<td>4.47 ± 0.81</td>
<td>5.55 ± 0.57</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>4.32 ± 0.37***</td>
<td>3.12 ± 0.71***</td>
<td>4.28 ± 0.60***</td>
<td>3.36 ± 0.77***</td>
<td>4.75 ± 0.80***</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>3.43 ± 0.39</td>
<td>2.49 ± 0.50</td>
<td>3.10 ± 0.58</td>
<td>2.52 ± 0.33</td>
<td>3.19 ± 0.54</td>
</tr>
<tr>
<td>Serum ayrılmış (cm)</td>
<td>1</td>
<td>4.77 ± 0.43</td>
<td>2)</td>
<td>3)</td>
<td>3)</td>
<td>3)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>6.53 ± 0.27</td>
<td>2)</td>
<td>3)</td>
<td>3)</td>
<td>3)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7.07 ± 0.07</td>
<td>2)</td>
<td>3)</td>
<td>3)</td>
<td>3)</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>7.33 ± 0.09</td>
<td>2)</td>
<td>3)</td>
<td>3)</td>
<td>3)</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>7.60 ± 0.06</td>
<td>3)</td>
<td>3)</td>
<td>3)</td>
<td>3)</td>
</tr>
<tr>
<td>Viskozite (saz/10 cm)</td>
<td>1</td>
<td>7.33 ± 0.33***</td>
<td>9.10 ± 0.10***</td>
<td>12.43 ± 1.37***</td>
<td>19.17 ± 4.04***</td>
<td>23.77 ± 3.74***</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>8.33 ± 0.33***</td>
<td>9.25 ± 0.56***</td>
<td>12.78 ± 1.19***</td>
<td>19.33 ± 2.73***</td>
<td>30.53 ± 7.52***</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>8.67 ± 0.33***</td>
<td>9.85 ± 0.83***</td>
<td>14.40 ± 2.91***</td>
<td>26.00 ± 9.40***</td>
<td>36.10 ± 10.80***</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>7.67 ± 0.33***</td>
<td>9.40 ± 0.40***</td>
<td>12.00 ± 1.53***</td>
<td>18.87 ± 2.05***</td>
<td>30.11 ± 7.32***</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>7.33 ± 0.33***</td>
<td>8.97 ± 0.30***</td>
<td>9.26 ± 0.83***</td>
<td>15.13 ± 4.06***</td>
<td>28.21 ± 6.34***</td>
</tr>
</tbody>
</table>

1) Çizelgedeki değerler dört tekrarın ortalamasıdır.
2) Berrak olması bir serum ayrılmış gölgelebilirkenoğlım yaplanmıştır.
3) Depolamanın hiçbir döneminde serum ayrılmış gölgenmemiştir.

*Ayın sardı farklı listine göre, her ortalamaya göre orijinal istatistiklerin olarak önemli bulunmuştur (*p<0.05, **p<0.01, ***p<0.001).
Deneme örneklerinin tirozin değerleri üzerine pektin kullanım oranlarının etkisi depolamanın 45. gününe kadar önemlisiz (p<0.05), 60. günde ise önemli bulunmuştur (p<0.05). Depolama sırasında, tirozin içeriğinde 0.074-0.100 mg/g arasında değişen bir artış meydana gelmiş, 60. günün sonunda en fazla değişim pektin %0.8 oranında kullanıldığı ayran örneğinde, en az değişim ise geleneksel ayran örneğinde görülmüştür. Tirozin içeriği ile bozuk tat ve aroma arasında bir ilişki bulunmuştur, ancak bozuk tadin oluşması için gerekli sınırlar değeri ürun bazında farklılık göstermektedir. Örneğin, tirozin içeriği set yoğunlarında 0.144 mg/g, sütme yoğunlarda da 0.217 mg/g düzeyinde olduğu bozuk tat ve aromanın ortaya çıkığı ATAMER ve ark. (1993) tarafından bildirilmiştir. Bu arastırımda, 0.141-0.270 mg/g arasında saptanan tirozin değerleri, belirlenen sınırlar değerlerine yakınlıkma birlikte, duysusal değerlandırma sonuçları, örneklerde 60 günlük depolama süresince bozuk bir tara da rastlanmadığı ortaya koymuştur.

pektin %0.4, %0.6 ve %0.8 oranlarında katılıdığı dayanıklı ayran örneklerinde tüm tekerürlerde 60 günlük depolama süresince serum ayırması göstermemiştir, geleneksel yöntemle üretilen ayran örneklerinde ise, giderek artan düzeyde serum ayırması meydana gelmiştir (Çizelge 3). Pektin %0.2 oranında katılıdığı örnekler, denemelerde birlikte ilk tekerürde serum ayırması görülmemek, son iki tekerürde geleneksel örnekleri kadar berrak olup ölçülen boyunca bir serum ayırması saptanmıştır. Tekerürlar arasında görülen bu farklılığın sütlerin Ca++ ionu içeriğindeki değişimin kaynaklandığı tahmin edilmiştir. Bilindiği üzere, ilave edilen pektin ikinci ortamda bulunan Ca++ ıyonları ile reaksiyon girmekte, daha sonra proteinlere bağlanmaktadır. Sonuçta, proteinlerin sedimentme, dolsayyla serum ayırması engellenmektedir (ATAMER ve ark. 1995).

pektin ilavesi, örnekler arasında viskozite değerleri bakımından depolamanın 1., 15., 45. ve 60. günlerinde p<0.01 düzeyinde, 30. günde ise p<0.05 düzeyinde önemli farklılık yaratmıştır. Pektin kullanım oranlarındaki artışa bağlı olarak örneklerin viskozitesi meydana gelmiştir (Çizelge 3). Diğer bir ifadeyle depolamanın tüm dönemlerinde geleneksel ayran örneği en düşük, pektini en yüksek oranda içeren örnek de en yüksek viskozite değerini vermiştir. Depolama sırasında, geleneksel yöntemle üretilen ayranı pektin %0.2 oranında kullanıldığı örneklerin viskoziteleri fazla bir değişim göstermemiştir. Buna karşın, pektinin %0.4, özellikle de %0.6 ve %0.8 oranlarında kullanıldığı örneklerde, 30. güne kadar bir artma daha sonra dönemlerde ise belirgin bir azalma teşbit edilmiştir. Bunun nedeni, asidik koşullarda pektinin enzimatik yolla kolayca parçalanabilmesidir. Pektinin kimyasal yapılarında meydana gelen küçük bir değişim viskozitede önemli azalmaları neden olmuştur (MAY 1997).

Mikroorganizma İçerisindeki Değişimlere

Ayran örneklerine ait mikrobiyolojik sayım sonuçları Çizelge 4'de verilmiştir.

Çizelge 4. Ayran Örneklerinin Mikrobiyolojik Sayım Sonuçları

<table>
<thead>
<tr>
<th>Deneme</th>
<th>Toplan bakt. (log cfu/g)</th>
<th>Koliform (log cfu/g)</th>
<th>Maya-Küf (log cfu/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Geleneksel</td>
<td>4.22<sup>+</sup></td>
<td>3.53<sup>+</sup></td>
<td>3.18<sup>+</sup></td>
</tr>
<tr>
<td>%0.2 pektin katılı</td>
<td>2.67<sup>-</sup></td>
<td>2.61<sup>-</sup></td>
<td>2.46<sup>-</sup></td>
</tr>
<tr>
<td>%0.4 pektin katılı</td>
<td>2.60<sup>-</sup></td>
<td>2.56<sup>-</sup></td>
<td>2.44<sup>-</sup></td>
</tr>
<tr>
<td>%0.6 pektin katılı</td>
<td>2.36<sup>-</sup></td>
<td>2.22<sup>-</sup></td>
<td>2.12<sup>-</sup></td>
</tr>
<tr>
<td>%0.8 pektin katılı</td>
<td>2.33<sup>+</sup></td>
<td>2.23<sup>+</sup></td>
<td>2.07<sup>+</sup></td>
</tr>
</tbody>
</table>

1) Çizelgedeki değerler dört tekerürün ortalamasıdır.

a,b,c,d Ayran sınırları farklı ıstırmay ile göstelen örnek ortalamaları arasındaki farklılık istatistiksel olarak önemli bulunmuştur (p<0.05, **p<0.01).
Deneýe örneklerinin toplam bakteri içeriği üzerine pektin kullanım oranlarının etkisi tüm depolama dönemlerinde önemli (p<0.05) bulunmuştur. Çizelge 4 incelendiğinde, geleneksel ayran örneğinin toplam bakteri içeriðinin diğer örneklerde göre daha yüksek olduğu görülmektedir. Bunun nedeni, dayanıklı ayran üretim teknolojisinin gereði olarak isil işlem uygulanmasıdır.

Maya-kőf ve koliform grubu mikroorganizmalar sadece geleneksel yöntemle üretilen ayran örneðinde tesbit edilmiştir. Belirtilen ömekte 30. günden itibaren koliform grubu mikroorganizmaları rastlanmamış, maya-kőf içeriði ise dönemler arasında farklılık göstermiştir. Söz konusu farklılığın önemsið olduğu düþünülmektedir.

Duyusal Niteliklerde Ðeðiðimler
Ömelerin toplam duyusal puanlarının genel ortalama 13.49 ile 26.68 arasında değişimin göstermiştir (Çizelge 5). En düşük genel ortalama puana geleneksel ayran öðrði sahip olmuştur. Bu ömekte, depolamanın 1. günden itibaren çöð belirgin serum ayrılmasının ortaya çıktığı, ayrıca panelistlerin bir kısmı tarafindan homojen olmayan püttürtü ve düşük kıvamli bir yapı kusurunun saptanması, görünüş ve şarap puanlarının, dolayısıyla genel ortalamanın düşmesine neden olmuştur. Pektinin %0.2 oranında kullanıldığı dayanıklı ayran örneğinde bazı tekerrürlere berrak olmayan serum ayrılması gözlenirken, pektin katkıði diğer örneklerde serum ayrılması saptanamamıştır. Depolama süresince, pektinin %0.4, %0.6 ve %0.8 oranlarında kullanıldığı örneklerin yapı puanlarının diğer örneklerden daha yüksek olduğu görülmüþtir. Deðerlendirme sonuçları, pektin kullanım oranındaki artðða bað½ olarak, örneklerin daha iyi bir kıvam ve daha düzgün bir yapıya sahip olduklarını ortaya koymur. Tat ve aroma açısından ayran örnekleri, 60 günlük depolama süresi sonuna kadar tüketilebilir nitelikte bulunan, özellikle pektin katkıði örneklerin hiçbirisi de tat ve aroma hissedildiği panelistler tarafından ifade edilmiştir. Bu nitelik bakımından en çok %0.6 pektin katkıði ömek beþeñnilmiş, bunu pektinin %0.8 oranında katıldığı ömek izlemiñtir.

Çizelge 5. Ayran Örneðilerinin Duyusal Deðerlendirme Sonuçlarðı

<table>
<thead>
<tr>
<th>Deneme ömeleri</th>
<th>Depolama süresi (gün)</th>
<th>Görünüş (Tam puan 10)</th>
<th>Yaprak (Tam puan 10)</th>
<th>Tat-aroma (Tam puan 10)</th>
<th>Toplam (30 puan)</th>
<th>Genel ortalama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geleneksel</td>
<td>1</td>
<td>3.06</td>
<td>3.34</td>
<td>8.40</td>
<td>14.80</td>
<td>13.49</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.00</td>
<td>3.90</td>
<td>8.06</td>
<td>14.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.16</td>
<td>3.42</td>
<td>6.73</td>
<td>12.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>2.30</td>
<td>3.72</td>
<td>7.70</td>
<td>13.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>2.10</td>
<td>3.00</td>
<td>6.60</td>
<td>11.70</td>
<td></td>
</tr>
<tr>
<td>%0.2 pektin katkılı</td>
<td>1</td>
<td>6.37</td>
<td>5.62</td>
<td>8.55</td>
<td>20.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.79</td>
<td>6.39</td>
<td>8.46</td>
<td>20.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.44</td>
<td>5.89</td>
<td>8.13</td>
<td>18.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>4.50</td>
<td>5.55</td>
<td>7.12</td>
<td>17.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>5.40</td>
<td>5.70</td>
<td>8.14</td>
<td>19.24</td>
<td></td>
</tr>
<tr>
<td>%0.4 pektin katkılı</td>
<td>1</td>
<td>9.06</td>
<td>9.20</td>
<td>8.06</td>
<td>26.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9.60</td>
<td>8.80</td>
<td>8.53</td>
<td>26.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>9.26</td>
<td>8.40</td>
<td>8.30</td>
<td>25.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>9.09</td>
<td>8.54</td>
<td>7.32</td>
<td>24.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>8.80</td>
<td>8.80</td>
<td>8.40</td>
<td>25.20</td>
<td></td>
</tr>
<tr>
<td>%0.6 pektin katkılı</td>
<td>1</td>
<td>9.06</td>
<td>9.46</td>
<td>8.63</td>
<td>27.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9.60</td>
<td>9.20</td>
<td>8.26</td>
<td>27.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>9.40</td>
<td>8.86</td>
<td>8.30</td>
<td>26.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>9.80</td>
<td>8.60</td>
<td>7.43</td>
<td>25.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>9.20</td>
<td>9.20</td>
<td>8.40</td>
<td>26.80</td>
<td></td>
</tr>
<tr>
<td>%0.8 pektin katkılı</td>
<td>1</td>
<td>9.06</td>
<td>9.52</td>
<td>8.63</td>
<td>27.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9.72</td>
<td>9.20</td>
<td>7.96</td>
<td>26.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>9.40</td>
<td>8.52</td>
<td>8.03</td>
<td>25.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>9.80</td>
<td>8.60</td>
<td>7.00</td>
<td>25.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>9.20</td>
<td>8.80</td>
<td>8.00</td>
<td>26.00</td>
<td></td>
</tr>
</tbody>
</table>

1) Çizelgedeki değerler döert tekerrürde 10 panelist tarafından verilen puanların ortalamasıdır.
SONUÇ

Araştırma bulgularının genel bir değerlendirme yapıldığında;
* "Dayanıklı Ayran" üretiminde yabancı bir tat ve aroma gelişimine yol açıman %0.2-0.8 arasında değişen oranlarda pektin kullanılabileceğini,
* Pektin kullanım oranındaki artışa bağlı olarak ürünün kabul edilebilirliğinin artış gösterdiğini,
* Stabilizatör olarak pektinden yararlanıldıktan taktirde, yoğun bir inekbaşysonuna pH 4.0 civarında son verilmesinin ve ayran üretiminde homojenizasyon (150-200 kg/cm²-50°C) uygulanmasının gerekli olduğu,
* Pektinin %0.2 oranında kullanılması halinde, homojenizasyonun iki kere yapılmasını serum ayrılmaması önlemek açısından etkili olacağını,
* İşlete bazında ele aインドında, düşük oranda pektin kullanımının ekonomik yönden yarar sağlayacağı söylenebilir.

KAYNAKLAR

ANONYMOUS (a), tarihizs. Stabilization of Fermented and Directly Acidified Sour Milk Drinks. AVS Kobenhavns Pektinfab-
rik. Copenhagen, Denmark.
pit J. Dairy Sci. 10, 125-128.
STEINSHOLT, K., H.E. CALBERT, 1960. A Rapid Colorimetric Method for Determination of Lactic Acid in Milk and Milk Pro-