Abstract
The authors consider the commutativity and associativity of binary di-operations on a texture and go on to study the space of real difunctions on a texture and the space of bicontinuous real difunctions on a ditopological texture space.

Keywords: Texture, Relation, Corelation, Direlation, Difunction, Commutativity, Associativity, Di-operation, Real difunction.

2000 AMS Classification: 06D10, 06D99, 06D72, 03E20, 54C08.

1. Introduction
Let S be a non-empty set. We recall [1] that a texturing on S is a point separating, complete, completely distributive lattice \mathcal{S} of subsets of S with respect to inclusion, which contains S, \emptyset, and for which meet \bigwedge coincides with intersection \bigcap and finite joins \bigvee coincide with unions \bigcup. Textures first arose in connection with the representation of Hutton algebras and lattices of L-fuzzy sets in a point-based setting [3], and have subsequently proved to be a fruitful setting for the investigation of complement-free concepts in mathematics. The sets

$$P_s = \bigcap \{A \in \mathcal{S} \mid s \in A\}, \quad Q_s = \bigvee \{P_u \mid u \in S, \ s \notin P_u\}, \ s \in S,$$

are important in the study of textures, and the following facts concerning these so-called p-sets and q-sets will be used extensively below.

1.1. Lemma. [5, Theorem 1.2]

1. $s \notin A \implies A \subseteq Q_s \implies s \notin A^s$ for all $s \in S, A \in \mathcal{S}$.
2. $A^s = \{s \mid A \not\subseteq Q_s\}$ for all $A \in \mathcal{S}$.
3. For $A_i \in \mathcal{S}, i \in I$ we have $(\bigvee_{i \in I} A_i)^s = \bigcup_{i \in I} A_i^s$.
4. A is the smallest element of \mathcal{S} containing A^s for all $A \in \mathcal{S}$.

Hacettepe University, Mathematics Department, 06532 Beytepe, Ankara, Turkey. E-mail (L. M. Brown) brown@hacettepe.edu.tr (A. Irkad) irkad@hacettepe.edu.tr