COMMON FIXED POINT THEOREMS
IN CONE BANACH SPACES

Thabet Abdeljawad∗, Erdal Karapınar†‡ and Kenan Taş∗

Received 15:06:2010 : Accepted 11:10:2010

Abstract
Recently, E. Karapınar (Fixed Point Theorems in Cone Banach Spaces, Fixed Point Theory Applications, Article ID 609281, 9 pages, 2009) presented some fixed point theorems for self-mappings satisfying certain contraction principles on a cone Banach space. Here we will give some generalizations of this theorem.

Keywords: Cone normed spaces, Fixed point theory.

2010 AMS Classification: 47H10, 54H25.

Communicated by Cihan Orhan

1. Introduction and Preliminaries

It is quite natural to consider generalization of the notion of metric \(d : X \times X \rightarrow [0, \infty)\). The question was, what must \([0, \infty)\) be replaced by. In 1980 Bogdan Rzepecki [17], in 1987 Shy-Der Lin [14] and in 2007 Huang and Zhang [5] gave the same answer: Replace the real numbers with a Banach space ordered by a cone, resulting in the so called cone metric. In this setting, Bogdan Rzepecki [17] generalized the fixed point theorems of Maia type [15] and Shy-Der Lin [14] considered some results of Khan and Imdad [13]. Also, Huang and Zhang [5] discussed some properties of convergence of sequences and proved a fixed point theorem of contractive mapping for cone metric spaces: Any mapping \(T\) of a complete cone metric space \(X\) into itself that satisfies, for some \(0 \leq k < 1\), the inequality \(d(Tx, Ty) \leq kd(x, y)\) for all \(x, y \in X\), has a unique fixed point.

Following Huang and Zhang [5], many results on fixed point theorems have been extended from metric spaces to cone metric spaces (see e.g. [1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 16, 18, 19, 20]).