### Graphical properties of the bipartite graph of Spec(Z[x])\{0}

#### Abstract

#### Keywords

#### Full Text:

PDFDOI: http://dx.doi.org/10.13069/jacodesmath.66836

#### References

D. F. Anderson and P. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, 434-447, 1999.

E. Celikabs and C. Eubanks-Turner, The Projective Line over the Integers, Progress in Commutative Algebra II: Ring Theory, Homology, and Decompositions, 221-240, De Gruyter, 2012.

C. Eubanks-Turner, M. Luckas, S. Saydam, Prime ideals in Birational extensions of two-dimensional power series rings, Communications in Algebra, 41(2), 703-735, 2013.

W. Heinzer, C. Rotthaus, S. Wiegand, Mixed polynomial/power series rings and relations among their spectra, Multiplicative ideal theory in commutative algebra, Springer, New York, 227-242, 2006.

W. Heinzer, S. Wiegand, Prime ideals in two-dimensional polynomial rings, Proc. Amer. Math. Soc., 577-586, 1989.

W. Heinzer, S. Wiegand, Prime ideals in polynomial rings over one-dimensional domains, Trans. Amer. Math. Soc., 347(2), 639-650, 1995.

A. Li, S. Wiegand, The Polynomial Behavior of Prime Ideals in Polynomial Rings and the Projective Line over Z, Factorization in Integral Domains, Lecture Notes in Pure and Applied Mathematics, 189(3), 383-400, 1997.

A. Li, S. Wiegand, Prime ideals in two-dimensional domains over the integers, J. Pure Appl. Algebra, 130(3), 313-324, 1998.

D. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 2001.

R. Wiegand, Homeomorphisms of affine surfaces over a finite field, J. London Math. Soc., (2), 18(1), 28-32, 1978.

R. Wiegand, The prime spectrum of a two-dimensional affine domain, J. Pure Appl. Algebra, 40(2), 209-214, 1986.