ÖZET

I - 214, 70 D ve 64 H Melez Kavak Klönlerinde LİF Morfoloji Yönterinden Araştırmalar ve Odunlardan Yarı Kimyasal Metodla Sellüloz Elde Etme İmkanları.

Yazar:
Dr. Ming - Zen Huang

I - 214, 70 D ve 64 H (Populus x euramericana) melez kavak klönleri odunlarının selüloz endüstrisinde ham madde olarak değerlendirilme imkanlarını araştırmak üzere yapılan olan bu araştırma, kimyasal analizler, morfolojik etüdler ve (NSSC) Nötral Sülfit Yarı Kimyasal Metodu ile selüloz elde etme denemeleri olmak üzere üç bölümün meydana gelmiş bulunmaktadır.

Denemelere başlamadan önce, örneklerin çekim odunu ihtiyaç edip etmedikleri mikroskopik olarak araştırılmış ve bunun sonucunda araştırma materyelinin jelatinimsi çekim odunu liflerini ihtiyaç etmediği anlaşılmıştır. Keza lif hücre çevresinin sekonder tabakasında da, G tabakası (jelatinimsi tabaka) bulunmadığı görülüştür. Bunların sonucu olarak örnekrgin çekim odunu ihtiyaç etmedikleri ve dolaysıyla bütün populasyonu temsil edebilecek normal numuneler durumunda bulundukları anlaşılmıştır.

Her denemeden elde edilen sonuçlar, istatistik bakımından kontrol edilmiş, varyans analizleri yapılmış ve farkların önem dereceleri hesaplanmıştır. Odunların kimyasal bileşim ve morfolojik özellikleri ile selülozlarının direnç karakteristikleri karşılaştırılmış olarak incelenmiştir.

Denemeler aşağıda gösterildiği şekilde yürütülmüştür:

I. Kimyasal Analizler:

Bu bölümde TAPPI ve ASTM Standard metodları uygulanmıştır. Deneme örnekleri hava kurusu haline geldikten sonra 250 - 420 mikron
(60 - 40 mesh) tane büyüklüğe kadar öğütülecek ekenmiştir. Sonuçlar Cetvel 1 de verilmiş bulunmaktadır.

1 — Rutubet Oranı : ASTM D 1102 - 50 T uyarınca kurutma dolabında 105 ± 2°C de değişmez ağırlık elde edilinceye kadar tekrarlanan- rak yapılmıştır.

3 — Odunun Lignin Oranı : ASTM D 1106 - 50 T, TAPPI T 13 m - 54 e göre tahmin edilecek Odun karbohidratlarının hidrolizi için %72 lik sulfürlik asit kullanılmıştır (Cetvel 1). Her üç klon, lignin %si bakiy- minden birbirinden farklı bulunmuştur.

4 — Odunda Holoselüloz Miktari : Bu maksatla, ilk, asitlendirilmiş sodyum klort metodu uygulanmış ve her üç klon birbirinden belirgin olarak farklı bulunmuştur (Cetvel 1).

5 — Odunda Pentozanlar : TAPPI T 19 m - 50 ye göre gravimetrlik metod uygulanmak suretiyle tahmin edilmiştir. Odun pentozanları %12 lik hidrokarbonik asitlerle furfurol'a dönüştürüldükten sonra destillemişi ve floroglusin ile furfurol, floroglusid halinde çıkartılmıştır.

Floroglusid çökelegi kurutulup tartılıldığı numbers %i oranları hesaplanmıştır. 70 D klonu pentozan bakımından diğerlerinden önemli derecede düşük sonuç vermiş, I - 214 ve 64 H klonları arasında ise belirgin bir fark bulunmamıştır.

6 — Alkol - benzende çözünürlük : TAPPI T 6 m - 54,
7 — Eterde çözünürlük : TAPPI T 5 m - 45, ASTM D 1108 - 50 T,
8 — Soğuk suda çözünürlük : ASTM D 1110 - 50 T - A,
9 — Sıcak suda çözünürlük : ASTM D 1110 - 50 T - B,
10 — % 1 lik sodyum hidroksitte çözünürlük : ASTM D 1109 - 50 T ve TAPPI T 4 m - 44 metoduna göre tespit edilmiştir.

Buna göre : Organik çözücüler ve su ile yapılan bu denemelerin sonuçları arasinda istatistik yünden belirgin bir fark tespit edilmiştir. %1 lik sodyum hidroksitde çözünürlük deneme sonuçlarına göre ise 64 H klonu diğer ikisinden düşük bir çözünürlük derecesi vermek suretiyle farklı bulunmuş, diğer iki klon ise aralarında bu bakımından bir fark göstermemiştir.
Hücre Çeper Kalınlığı Mikroskopik ölçmelerde ölçülmemiştir

Şekil 1. Üç Klönon Lıf Boyutları Ortalama Değerleri
(Cell Wall Thickness)

3. W. = (working unit on the microscopic measurements)
(Fig. 1. Average Fiber Dimensions of the Three Clones)

ilk bahar odunu yaz odunu ilk bahar o. yaz o. ilk bahar o. yaz o.
dığ tabaka (Outer Layer) (Middle Layer) orta tabaka (Inner Layer) iç tabaka
(7th to 10th growth ring) (4th to 6th growth ring) (1st to 3rd growth ring)
7 - 10 yıllık halka 4 - 6 yıllık halka 1 - 3 yıllık halka

Şekil 2. 4 ve 6 m Yüksekliklerde Lıf Uzunluğu ve Genişliği Değişimi
(Fig. 2. Variation of Fiber Length and Width at 4 to 6 Meters'Height)

Diş Tabaka Orta Tabaka İç Tabaka
(Outer Layer) (Middle Layer) (Inner Layer)
(7th to 10th growth ring) (4th to 6th growth ring) (1st to 3rd growth ring)

Şekil 3. 4 ve 6 m Yüksekliklerde Lıf Uzunluğu ve Genişliği Değişimi
(Fig. 3. Variation of Fiber Length and Width at 4 to 6 Meters'Height)

Diş Tabaka Orta Tabaka İç Tabaka
(Outer Layer) (Middle Layer) (Inner Layer)
(7th to 10th growth ring) (4th to 6th growth ring) (1st to 3rd growth ring)

Şekil 4. 4 ve 6 m Yüksekliklerde Lıf Uzunluğu ve Genişliği Değişimi
(Fig. 4. Variation of Fiber Length and Width at 4 to 6 Meters'Height)
II. Hacim-Yoğunluk Değeri:

Hacim-yoğunluk değerinin selüloz endüstrisindeki birim hacim odundan elde edilebilecek lif miktarının tespitine uygulduğu ve tabi-kinin kolaylığı sebebiyle tam kuru ağırlık/yahşacım esası üzerinden yapılmıştır.

![Diagram](image)

Şekil 5. Pişirme Şartları

(Fig. 5. Digestion Conditions)

İşaretler:

(Legend)

- a. Atmosfer basınçında ön buharlama (Pre-steaming stage, at atmospheric pressure)
- b. Pişirme çözeltisi ilave edilip kazan döndürülmeğe bağlı olarak (Cooking liquor injected, tumbling begins)
- c. Emprenye kademesi (Impregnation stage)
- d. Fazla Çözeltinin girişi alınması (Blow back the supernatant liquor)
- e. Pişirme kademesi, 45 veya 60 dakika (Cooking stage, for 45 or 60 minutes)

Sonuçlar:

- \(I - 214 = 0.325 \pm 0.004 \text{ g/cm}^3 \)
- \(70 \text{ D} = 0.289 \pm 0.004 \text{ g/cm}^3 \)
- \(60 \text{ H} = 0.329 \pm 0.004 \text{ g/cm}^3 \)

Güvenlik sınırı: 1 %

Buna göre; 70 D klonu hacim yoğunluğunu bakımından belirgin olarak diğer ikisinden daha hafif fakat I-214 ile 64 H arasındaki fark ise önemsziz bulunmuştur.

III. Lif Boyutlarının Ölcümünde Mikroskopik Metodlar:

1. Odun lif hücreleri, iğnek asitlerinden sosyum klorit (NaClO₂) ile dağıtılmak suretiyle bir maserasyona tabi tutulmuş ve büyütülmiş görüntülerini üzerinde ölçmeler yapılmıştır.

a. Ortalama lif uzunluğu: Hesaplamalarda uygulanın güvenilik sınırı %1 dir (Cetvel II).

70 D'nin lif uzunluğu, diğer ikisinden lif uzunliğindan belirgin olarak farklı ve fazla olmasına karşılık I-214 ve 64 H arasında önemli bir fark bulunamamıştır.

b. Ağacın 4 ve 6 metre yüksekliklerinde lif uzunluğu değişimi:

Ağacın 4 ve 6 metre yüksekliklerinden alınan enine kesitler, ayrıca üçer kısma bölünmüştür. Bunlar: iç tabaka (1 ve 3. yıl halkaları) orta tabaka (4 ve 6. yıl halkaları) ve dış tabaka (7 ve daha yukarı yıl halkaları) dir.

Her tabaka ayrıca İlkbahar ve Yaz odunu lifleri olmak üzere iki kısımda incelenmiştir.

Sonuçlar:

- I-214: Orta tabaka > Dış tabaka > İç tabaka şeklindedir ve her tabakadaki yıllık halkalarda Yaz odunu lifleri İlkbahar odunu liflerinden belirgin olarak uzun bulunmuştur. Ancak lif uzunluğunun azamiye eriştiği orta tabakada, İlkbahar ve Yaz odun lifleri arasındaki fark belirgin değildir.

- 70 D: Orta tabaka > Dış tabaka > İç tabaka değişiminin gidiği, I-214'in aynıdır.
64 H: Dış tabaka > Orta tabaka > İç tabaka tarzındadır. Her tabakadaki yihlik halkaları, Yaz odunu lifleri uzunluğunun İlkbahar odunu liflerinden farklı olduğu görülmektedir.

2. Lif Enine Kesitinde Boyutların Ölçümüleri:

Ölçümeler, kesit yüzeyleri tamamen yarıçap, teğet ve enine kesit yönünde parametrelere göre getirilmiş küp şeklindeki odun örneklerinden alınan 30 mikron kalınlıkta enine kesitler üzerinde yapılmıştır. Hücrelerin enine kesidine ait boyutlar, mikroskop okülerine yerleştirilen özel bir mikrometre yardımı ile ölçülmiştir.

a. Ortalama Hücre Çapı: Cetvel II.

Hesaplamalarda güvenlik sınırı 1% olarak alınmıştır.

Her üç klon, hücre çapları bakımından birbirlerinden farklı bulunmuştur.

![Şekil 7. Döğme süresine göre kopma uzunluğu](Fig. 7. Breaking Length vs. Beating Time)

b. Ortalama Çift Çeper Kalınlığı: Cetvel II.

Güvenlik sınırı 1% dir.

I - 214 ve 64 H çeper kalınlığı bakımından birbirinin aynı, 70 D ise önemli derecede diğerlerinden farklı ve daha ince olarak bulunmuştur.

c. 4 ve 6 m. yüksekliklerde hücre çapı değişimi:

Örnekler, lif uzunluğunda olduğu gibi üç kategoride incelenmiştir.
Sonuçlar:

Ayrılan kademelerde bu bakımdan bir düzen bulunamamıştır. Sadece bütün kademelerde ilk bahar odunu lif hücrelerinin Yaz odunun- dan daha geniş olduğu görülmuştur.

3. Bazı Morfolojik Özellikler ile Kimyasal Bileşimler Arasındaki İlişkiler:

a. Hacim-yoğunluk değerleri ile lignin oranı arasında:
 \(r : 0.71 \),

b. Hacim- yoğunluk değeri ile hücre çeper kahını ile arasında:
 \(r : 0.93 \),

Şekil 8. Döğülme süresine göre patlama faktörü değişimi
(Fig. 8. Burst Factor vs. Beating Time)

Şekil 9. Döğülme süresine göre yirtılma faktörü değişimi
(Fig. 9. Tear Factor vs. Beating Time)
c. Hücre çeper kalınlığı ile lignin oranı arasında:
 \[r : 0.92 \]
d. Lif uzunluğu ile holoselüloz oranı arasında:
 \[r : 0.93 \]
korelasyon katsayları ile hesaplanan ilgiler bulunmaktadır.

IV. Nötral Sülfit Yarı Kimyasal (NSSC) Selüloz Elde Etme Denemeleri:

Denemeler 15 litrelik döner bir kazanada (digester’de) yapılmıştır.

Sonuçlar:

1. Artık suların pH derecesi: 6.3 - 8.6,
2. Verim: Tam kuru oduna oranla % 73 ila 86 arasındadır.
4. Kalıntı lignin: Tam kuru oduna oranla % 13.5 - 16.4 arasındadır.
5. Selülozu rengi: Gri beyaz ile açık kahverengidir.

Direnç değerlendirirmeleri:

Selüloz 0, 5, 10, 15, 20 ve 25 dakika sürelerle Lämpfe gülcüli değişkeninde dolayımış ve bunlardan standart deneme kağıtları yapılmıştır. Bu kağıtların direnç ölçümü nıne standart şartlar altında % 65 nisbi rutubet ve 20°C de yapılmıştır.

Doğumleminin ve 50 SR° serbestlik derecesinde dolayımış selülozlara göre değerlendirilmiştir, enterpolasyonla hesaplanarak cetveller meydana getirilmiş ve grafiklerle ifade edilmiştir.

V. Lif Morfolojisı ve Selüloz Özellikleri:

Doğumleminin ve 50 SR° de dolayımış selüloz direnç değerleri ile lif morfolojisini arasındaki ilgileri ait korelasyon katsayları da ayrı ayrı araştırmış bulunmaktadır. Sonuçlar toplu olarak Cetvel III (1 ve2) de verilmişdir.

Sonuçlar:

1. Populus x euramericana kavak melez klonlarından Yarı Kimyasal (NSSC) metodu ile elde edilen selülozun direnç karakteristikleri ile odunlarına ait hacim yoğunluk değeri (−), lif uzunlu, (+), hücre çeper kalınlığı (−), elastikliyet oranı (+) ve Runkel oranları (−) arasında hemen hemen mükemmel denecek derecede ilgiler bulunmaktadır.

Şekil 10. Doğumle süresine göre hacimlik
(Fig. 10. Bulk vs. Beating)

* İşaretler ilginin artış yönünde olup olmadığını belirtmek üzere kullanılmıştır.
Cetvel : III. Lif Morfolojisi ve Selülozların Direnç Özellikleri
Korelasyon Katsaylarının Hesabı

1. Döğülmemiş Selüloz

<table>
<thead>
<tr>
<th>Direnç Özelliği</th>
<th>Kopma Uzunluğu</th>
<th>Patlama Faktörü</th>
<th>Yırtılma Faktörü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lif Morfolojisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hacım - Yoğunluk Değeri</td>
<td>0.850</td>
<td>0.821</td>
<td>0.877</td>
</tr>
<tr>
<td>Lif Uzunluğu, L</td>
<td>0.994</td>
<td>0.995</td>
<td>0.998</td>
</tr>
<tr>
<td>Hücre Çapı, D</td>
<td>0.235</td>
<td>0.046</td>
<td>0.126</td>
</tr>
<tr>
<td>Hücre Çeper Kahnliği, 2W</td>
<td>0.999</td>
<td>0.998</td>
<td>0.989</td>
</tr>
<tr>
<td>Lumen Çapı Oranı, Lu/D</td>
<td>0.919</td>
<td>0.882</td>
<td>0.957</td>
</tr>
<tr>
<td>Lif Uzunluğu/Hücre Çapı Oranı, L/D</td>
<td>0.506</td>
<td>0.578</td>
<td>0.407</td>
</tr>
<tr>
<td>Runkel Oranı, 2W/Lu</td>
<td>0.922</td>
<td>0.884</td>
<td>0.958</td>
</tr>
</tbody>
</table>

2. 50 SD* Döğülmüş Selüloz

<table>
<thead>
<tr>
<th>Direnç Özelliği</th>
<th>Kopma Uzunluğu</th>
<th>Patlama Faktörü</th>
<th>Yırtılma Faktörü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lif Morfolojisi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hacım - Yoğunluk Değeri</td>
<td>0.875</td>
<td>0.885</td>
<td>0.889</td>
</tr>
<tr>
<td>Lif Uzunluğu, L</td>
<td>0.903</td>
<td>0.996</td>
<td>0.996</td>
</tr>
<tr>
<td>Hücre Çapı, D</td>
<td>0.241</td>
<td>0.082</td>
<td>0.086</td>
</tr>
<tr>
<td>Hücre Çeper Kahnliği, 2W</td>
<td>0.852</td>
<td>0.982</td>
<td>0.982</td>
</tr>
<tr>
<td>Lumen Çapı Oranı, Lu/D</td>
<td>0.989</td>
<td>0.969</td>
<td>0.930</td>
</tr>
<tr>
<td>Lif Uzunluğu/Hücre Çapı Oranı, L/D</td>
<td>0.625</td>
<td>0.348</td>
<td>0.370</td>
</tr>
<tr>
<td>Runkel Oranı, 2W/Lu</td>
<td>0.972</td>
<td>0.968</td>
<td>0.968</td>
</tr>
</tbody>
</table>

2. Odunların lignin ve holoselüloz oranları ile, lif uzunluğu ve hücre çeper kalınlıkları arasındaki ligler, aşağı yukarı paralel olarak gitmektedir.

3. Bu kavak klonlarından elde edilen selülozların direnç karakteristikleri, morfolojik özellik veya kimyasal bileşimlerinden faydalanılmak suretiyle ortaya çıkarılabilecektir.

4. 2 x W lif çeper kalınlığı/lumen çapı münasebeti şeklinde ifade edilen Runkel oranı, mukayese katsayısı olan 1'in altında düşüşüne göre, her üç klon'un odunları yan kıyısal (NSSC) metodla selüloz edilde edilmesine gayet uygun görülmektedir.

5. Üç klon arasında 70 D, diğer ikisine kıyasla morfolojik ve kıyısal özellikleri bakımından yari kıyısal selüloz elde edilmesine da, elverişli bulunmuştur.

6. Araştırmaında konu teşkil eden bu üç kavak klonu odunlarından Nötral Sülfıt Metodu ile elde edilen selülozlar, kâğıt sanayinde diğe rifller ile kısıtılmak şartı hemen hemen her makset için kullanılmaya elverişli görülmüştür. Nitelik esmer, halde gazete kâğıdı na % 10, ambalaj kâğıt ve oluklu mukavva yapımında lif hamuruna % 25 oranına kadar kariştirilebilecektir **. Beyazaltılı olarak yazı tabi kâğıdi yapımında da uzun lifli selülozlara % 25 oranına kadar kariştırmak suretiyle kullanılabilirilecektir.

Ayrıca kavak odunlarından elde edilen selülozların opaklık dereceleri (ışığı geçirme) genelikle düşük olduğundan — gerekli kopma mukavemetini sağlamak şartı ile — uzun lifli selülozlardan % 30 ila 70 oranında kısıtlanmış suretiyle kavak selülozu şeffaf ve yağlı kâğıt yapımına uygun bulunmaktadır.

** SUMMARY**

This study was an attempt to evaluate the feasibility of Populus x euramericana I - 214, D D and 64 H as raw material for neutral sulfite semichemical (NSSC) process. Test material, of which found to be free from tension wood, was obtained from the Turkish Poplar Research Institute at Izmit (Kavakçılık Araştırma Enstitüsü - Izmit). Results are reported as following:

I. Routine Chemical Analyses (Table I)

All chemical analyses were carried out according to Tappi standards except the holocellulose determination was carried out according to the method of Wise, et al (43).

Table I. Chemical Composition of the Wood

<table>
<thead>
<tr>
<th></th>
<th>I-214</th>
<th>70 D</th>
<th>64 H</th>
<th>Standard Error</th>
<th>Significance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ash</td>
<td>0.56*</td>
<td>0.58</td>
<td>0.56</td>
<td>± 0.02</td>
<td>not sig.**</td>
</tr>
<tr>
<td>lignin</td>
<td>22.51</td>
<td>19.14</td>
<td>20.37</td>
<td>0.31</td>
<td>0.01</td>
</tr>
<tr>
<td>holocellulose</td>
<td>77.28</td>
<td>81.22</td>
<td>79.47</td>
<td>0.21</td>
<td>0.01</td>
</tr>
<tr>
<td>pentosans</td>
<td>20.79</td>
<td>19.38</td>
<td>20.56</td>
<td>0.34</td>
<td>0.05</td>
</tr>
</tbody>
</table>

solubility in:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>alcohol - benzene</td>
<td>3.56</td>
<td>3.59</td>
<td>3.46</td>
<td>0.14</td>
<td>not sig.</td>
</tr>
<tr>
<td>ether</td>
<td>1.37</td>
<td>1.27</td>
<td>1.43</td>
<td>0.02</td>
<td>not sig.</td>
</tr>
<tr>
<td>hot water</td>
<td>2.58</td>
<td>2.66</td>
<td>2.73</td>
<td>0.18</td>
<td>not sig.</td>
</tr>
<tr>
<td>cold water</td>
<td>1.28</td>
<td>1.40</td>
<td>1.52</td>
<td>0.11</td>
<td>not sig.</td>
</tr>
<tr>
<td>1 % NaOH</td>
<td>18.77</td>
<td>18.80</td>
<td>16.45</td>
<td>0.31</td>
<td>0.01</td>
</tr>
</tbody>
</table>

* all values in per cent of oven-dry wood.
** whenever the P (probability of occurrence) is greater than 0.05 the difference is considered as not significant.

II. Density Determination

All determinations were calculated on the basis of oven dry weight and green volume.

Results:

I - 214 : 0.325 ± 0.004 g/cm³
70 D : 0.289 ± 0.004 g/cm³
64 H : 0.329 ± 0.004 g/cm³

Significance : 0.01

70 D was significantly lighter than I - 214 and 64 H, but the difference between the two latters was not significant at 5% protection level.

III. Fiber Morphology

Fibers were macerated with acidified NaClO₂. Measurements were carried out with Wild M 20 microscope.

1. Average values: reported on Table II. and Fig. 1.

2. Variation of fiber length at 4 to 6 meters above the ground level. (Fig. 2, 3, and 4): Cross sections at 4 to 6 meters above the ground level were stratified into three layers, i.e. the inner layer (1st to 3rd growth rings), the middle layer (4th to 6th growth ring) and the outer layer (7th and outwards).

I - 214: middle layer > outer layer > inner layer
70 D: middle layer > outer layer > inner layer
64 H: outer layer > middle layer > inner layer

Besides, is each stratified layer the summerwood fibers were definitely longer than that of springwood, except in the middle layer of I - 214 and 70 D, where the fiber length reached the maximum, the difference was not significant at 5% protection level.

Table II. Fiber Morphology of the Wood

<table>
<thead>
<tr>
<th>Fiber Morphology</th>
<th>I-214</th>
<th>70 D</th>
<th>64 H</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>length, L</td>
<td>1.166 ± 0.066</td>
<td>1.225 ± 0.065</td>
<td>1.176 ± 0.077</td>
<td>mm</td>
</tr>
<tr>
<td>double cell wall</td>
<td></td>
<td></td>
<td></td>
<td>± 0.34 μ</td>
</tr>
<tr>
<td>thickness, 2 W</td>
<td>8.43</td>
<td>5.62</td>
<td>7.64</td>
<td>0.34 μ</td>
</tr>
<tr>
<td>cell diameter, D</td>
<td>24.22</td>
<td>22.59</td>
<td>20.93</td>
<td>0.34 μ</td>
</tr>
<tr>
<td>lumen diameter, Lu</td>
<td>15.79</td>
<td>16.97</td>
<td>13.29</td>
<td>0.34 μ</td>
</tr>
<tr>
<td>lumen fraction, Lu/D</td>
<td>65.19</td>
<td>75.12</td>
<td>63.50</td>
<td>%</td>
</tr>
<tr>
<td>length diameter ratio, L/D</td>
<td>48.14</td>
<td>54.33</td>
<td>56.19</td>
<td></td>
</tr>
<tr>
<td>Runkel ratio, 2 W/Lu</td>
<td>0.53</td>
<td>0.33</td>
<td>0.57</td>
<td></td>
</tr>
</tbody>
</table>

3. Relationship between Fiber Morphology and Chemical Composition

Correlation between:

a. Density and lignin contents:
 \(r = 0.71 \)

b. Density and cell wall thickness:
 \(r = 0.93 \)

c. Cell wall thickness and lignin contents:
 \(r = 0.92 \)

d. Fiber length and holocellulose contents:
 \(r = 0.93 \)
IV. Neutral Sulfite Semi-Chemical (NSSC) Pulping Experiment

The experiments were conducted in a tumbling digester. The process could be divided into 4 stages, i.e. 1. pre-staining for 30 minutes under atmosphere, 2. impregnation with cooking liquor at 120°C, 3. cooking at 170°C, and 4. mechanical treatment with a vertical disk attrition fibering machine. Different degrees of buffer with Na₂CO₃ and NaCHO₃ were also investigated (Fig. 5).

Results:
1. pH of spent liquor: 6.3 to 8.6
2. Yield: 73 to 86% oven dry weight
3. Kappa Number: 103 to 128
4. Residual lignin: 13.5 to 17.7%
5. Color of pulp greyish white to light brown.

Strength Evaluation:

Pulps beaten for 0, 5, 10, 15, 20 and 25 minutes with Lampen mill were made into standard test sheets. Strength properties were evaluated in a standard conditioned atmosphere of 20°C and 65% relative humidity (Fig. 5, 6, 7, 8, 9 and 10).

V. Fiber Morphology and Pulp Property

Correlation coefficients between fiber morphology and the strength property of unbleached and interpolated 50 SR⁷ beaten pulp were reported on Table III-a and III-b.

| Table III. Fiber Morphology and Pulp Strength Property |
|----------------|----------------|----------------|----------------|
| Fiber Morphology | r = | Breaking Length | Burst Factor | Tear Factor |
| Density | -0.850 | -0.821 | -0.877 |
| Fiber Length, L | 0.994 | 0.995 | 0.998 |
| Cell Diameter, D | -0.235 | 0.046 | -0.126 |
| Cell Wall Thickness, W | -0.999 | -0.998 | -0.989 |
| Lumen to Diameter Ratio, Lu/D | 0.919 | 0.882 | 0.957 |
| Length to Diameter Ratio, L/D | 0.506 | 0.578 | 0.407 |
| Runkel Ratio, 2 W/Lu | -0.922 | -0.884 | -0.958 |

Conclusion:

1. Density (--), fiber length (+), cell wall thickness (--), lumen to diameter ratio (+) and Runkel ratio (--) had almost perfect relationship with the strength property of NSSC pulp made from Populus x euramericana I - 214, 70 D and 64 H.

2. The holocellulose and lignin contents of the wood were almost parallel with fiber length and cell wall thickness respectively.

3. Consequently, the strength property of the NSSC pulp obtained from these three clones could be fairly safely predicted either from the fiber morphology or the chemical variables mentioned.

4. In as much as the Runkel ratios of the three clones were less than unity, all three clones could be considered as very suitable for NSSC pulping process.

5. 70 D, judging from its fiber morphology or chemical variables, was concluded as the best clone for the process.

6. NSSC pulps obtained from the three clones, which generally were low in opacity and with good strength, were suitable for corrugating board, newsprint, grease proof, glassine or even high-grade bond paper, if the bleached pulp were properly mixed with other long fiber pulp.

* Sign indicates whether relationship is direct (+) or inverse (--).
LITERATURE CITED

1. Afkenen, F. A.

4. ASTM Standards

5. Atalay, M., Dept. of Biology, Genetic and Culture, the Turkish Poplar Research Institute, İzmit.

6. Browning, B. L.

7. Browning, B. L.

8. Casey, J. P.

9. Chidester, G. H.

10. Chidester, G. H.

11. Clermont, L. P. and Bender, F.

12. Côté, W. A., Jr. and Day, A. C.

13. Curran, C. E.

14. Dinwoodie, J. M.

15. Duncan, D. B.

16. Erdtman H.
 Svensk Papperstidn. 43 : 255 (1940).

17. Fisher and Yates

18. Grant, J.

19. Hall, J. A.

21. Husch, B.

22. Libby, E.

23. McGovern, J. N. and Simmons, F. A.

24. Murphy, D. C.
 Appita 18 (2) 68 - 78, 1965.

27. Paolo Marpillere

28. Peterson, H. et al

30. Runkel, R.

31. Rydholm, S. A.

32. Smith, D. M.
33. Smith, D. M.

34. Stamm and Harris

38. Utaka, G. et al

39. Van den Akker

40. Wardrop, A. B.

41. Watson, A. J. and Dadswell, H. E.

42. Wise, L. E. and Lauer, K. H.

43. Wise, L. E., Murphy, M. and D'Addice, A. A.

44. Wise and John

45. Wise, L. E.

46. Van Buijten, J. P.
Sampling Fiber Length en Quaking Aspen

47. Forest Products Research Laboratory Leaflet No. 40 Revised Nov. 1956.
The Preparation of Wood for Microscopic Examination.

Text Book of Wood Technology

49. Asunmaa S. K. and Schwab, D. W.
Aspen Holocellulose and Morphology of Interfiber Bonding
— An Electron Microscopic Study
in «Cellular Ultrastructure of Woody Plants» by W. A. Côté, Jr.
Syracuse, 1964.

50. Calkin and Withams
Modern Pulp and Paper Making

51. Kaus Thomas

52. Hüs, S. and Tank, T.
Orman Endüstrisi Yönünden Lif Maddeleri ve Önemi (Fibrous Material and Its Importance in Forest Industry)
Türkiye Orman Mühendisliği III. Teknik Kongresi
Orman Ürünleri Sanayii III. Kitap
5 - 10 January, 1970.

53. Sağatçioğlu, F., İrmak, A., Acatay, G. and Berkel, A.
Kavak Kitabı
İstanbul Üniversitesi Yayınlarından No. 636
Orman Fakültesi No. 35.
Kurtuluş Matbaası, İstanbul, 1956.

54. Berkel, A.
Ağaç Malzeme Teknolojisi
I. U. Yayın No. 1448
O. F. Yayın No. 147.
İstanbul, 1970.