Generalized $\omega\alpha$-Closed Sets in Topological Spaces

S. S. Benchalli (benchalliss@gmail.com)
P. G. Patil (pgpatil01@gmail.com)
P. M. Nalwad (pushpanalwad@gmail.com)

Department of Mathematics, Karnatak University, Dharwad-580 003, Karnataka State, India.

Abstract - The aim of this paper is to introduce a new class of closed sets called $g\omega\alpha$-closed sets using $\omega\alpha$-closed sets in topological spaces. This class is independent of $\omega\alpha$-closed sets. This new class of set lies between the class of α-closed sets and the class of αg-closed sets. Some of their properties are investigated. We also define and study the $g\omega\alpha$-closure and $g\omega\alpha$-interior in topological spaces.

Keywords - Topological spaces, generalized closed sets, $\omega\alpha$-closed sets, $g\omega\alpha$-closed sets and $g\omega\alpha$-open sets.

1 Introduction

In 1969 Levine [9] gives the concept and properties of generalized closed (briefly g-closed) sets and the complement of g-closed set is said to be g-open set. In 1982 Mashhour et.al [13] introduced and studied the concept of pre-open set. Later Maki et.al [12], Dontechev [6], Gyanambal [7], Arya and Nour [3] and Bhattacharya and Lahiri [4] introduced and studied the concepts of gp-closed, gsp-closed, gpr-closed, gs-closed, sg-closed and αg-closed and their compliments are respective open sets.

1Corresponding Author
2 Preliminaries

Throughout this paper space \((X, \tau)\) and \((Y, \sigma)\) (or simply \(X\) and \(Y\)) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset \(A\) of a space \((X, \tau)\) \(\text{Cl}(A)\), \(\text{Int}(A)\) and \(A^c\) denote the Closure of \(A\), Interior of \(A\) and Compliment of \(A\) respectively.

Definition 2.1. A subset \(A\) of a topological space \((X, \tau)\) is called,

(i) **Semi-open set** [8] if \(A \subseteq \text{Cl}(\text{Int}(A))\) and **Semi-closed set** if \(\text{Int}(\text{Cl}(A)) \subseteq A\).

(ii) **Pre-open set** [13] if \(A \subseteq \text{Int}(\text{Cl}(A))\) and **Pre-closed set** if \(\text{Cl}(\text{Int}(A)) \subseteq A\).

(iii) **\(\alpha\)-open set** [16] if \(A \subseteq \text{Int}(\text{Cl}(\text{Int}(A)))\) and **\(\alpha\)-closed set** if \(\text{Cl}(\text{Int}(\text{Cl}(A))) \subseteq A\).

(iv) **Semi-pre-open set** [2] \((=\beta\)-open set [1]\) if \(A \subseteq \text{Cl}(\text{Int}(\text{Cl}(A)))\) and **semi-pre-closed** \((=\beta\)-closed set [1]\) if \(\text{Cl}(\text{Int}(\text{Cl}(A))) \subseteq A\).

(v) **Regular-open** [7] if \(A = \text{Int}(\text{Cl}(A))\) and **Regular-closed** if \(A = \text{Cl}(\text{Int}(A))\).

The \(\alpha\)-closure of \(A\) is the smallest \(\alpha\)-closed set containing \(A\), and this is denoted by \(\alpha\text{Cl}(A)\). Similarly the semi-closure (resp pre-closure and semi-pre-closure) of a set \(A\) in a topological space \((X, \tau)\) is the intersection of all semi-closed (resp pre-closed and semi-pre-closed) sets containing \(A\) and is denoted by \(\text{scl}(A)\) (resp \(\text{pcl}(A)\) and \(\text{spcl}(A)\)).

Definition 2.2. A subset of a topological space \((X, \tau)\) is called a,

(i) **Generalized closed** (briefly **g-closed**) set [9] if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).

(ii) **Semi-generalized closed** (briefly **sg-closed**) set [4] if \(\text{scl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is Semi-open in \(X\).

(iii) **Generalized semi-closed** (briefly **gs-closed**) set [3] if \(\text{scl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).

(iv) **Generalized \(\alpha\)-closed** (briefly **g\(\alpha\)-closed**) set [10] if \(\alpha\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\alpha\)-open in \(X\).

(v) **\(\alpha\)-generalized closed** (briefly **\(\alpha\)g-closed**) set [11] if \(\alpha\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).

(vi) **Generalized pre-closed** (briefly **gp-closed**) set [12] if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).

(vii) **Generalized semi-pre-closed** (briefly **gsp-closed**) set [6] if \(\text{spcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).

(viii) **Generalized pre-regular-closed** (briefly **gpr-closed**) set [7] if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular-open in \(X\).

(ix) **Weakly closed** (briefly **\(\omega\)-closed**) set [21] if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is semi-open in \(X\).

(x) **Weakly generalized closed** (briefly **\(\omega\)g-closed**) set [20] if \(\text{cl}(\text{int}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).

(xi) **Strongly generalized closed** (briefly **g\(^*\)-closed**) set [18] if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(g\)-open in \(X\).

(xii) **Regular generalized closed** (briefly **rg-closed**) set [17] if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular-open in \(X\).

(xiii) **\(\alpha\)-generalized regular closed** (briefly **\(\alpha\)gr-closed**) set [23] if \(\alpha\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular-open in \(X\).

(xiv) **\(g^*\)-preclosed** (briefly **\(g^*\)p-closed**) [22] if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(g\)-open
in X.

(xiv) \(\omega \alpha \) closed set [5] if \(\alpha \text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\omega \)-open in \(X \).

The compliment of the above mentioned closed sets are their open sets respectively.

\section*{3 \(g\omega \alpha \)-closed sets in Topological spaces.}

In this section we introduce \(g\omega \alpha \)-closed sets in topological space and study some of their properties.

\textbf{Definition 3.1.} A subset \(A \) of a topological space \((X, \tau)\) is called a generalized \(\omega \alpha \)-closed (\(g\omega \alpha \)-closed) set if \(\alpha \text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\omega \alpha \)-open in \(X \).

\textbf{Theorem 3.2.} Every closed set in \(X \) is \(g\omega \alpha \)-closed set.

\textbf{Proof:} Let \(A \) be a closed set in a topological space \(X \), let \(G \) be any \(\omega \alpha \)-open sets in \(X \) such that \(A \subseteq G \). Since \(A \) is closed, we have \(\text{cl}(A) = A \), but \(\alpha \text{cl}(A) \subseteq \text{cl}(A) \) is always true. So \(\alpha \text{cl}(A) \subseteq \text{cl}(A) \subseteq G \). Therefore \(\alpha \text{cl}(A) \subseteq G \). Hence \(A \) is \(g\omega \alpha \)-closed set.

The converse of the above theorem need not be true as seen from the following example.

\textbf{Example 3.3.} Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \) then the set \(A = \{a, c\} \) is \(g\omega \alpha \)-closed but not closed.

\textbf{Theorem 3.4.} Every \(\alpha \)-closed set in \(X \) is \(g\omega \alpha \)-closed set.

\textbf{Proof:} Let \(A \) be a \(\alpha \)-closed set in a topological space \(X \), let \(U \) be any \(\omega \alpha \)-open set in \(X \) such that \(A \subseteq U \). Since \(A \) is \(\alpha \)-closed we have \(\alpha \text{cl}(A) = A \subseteq U \). Therefore \(\alpha \text{cl}(A) \subseteq U \). Hence \(A \) is \(g\omega \alpha \)-closed set.

The converse of the above theorem need not be true as seen from the following example.

\textbf{Example 3.5.} Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a\}, \{b, c\}\} \) then the set \(A = \{b\} \) is \(g\omega \alpha \)-closed but not \(\alpha \)-closed in \(X \).

\textbf{Theorem 3.6.} Every \(g\omega \alpha \)-closed set in \(X \) is \(\alpha g \)-closed set in \(X \).

\textbf{Proof:} Let \(A \) be \(g\omega \alpha \)-closed set in \(X \). Let \(U \) be any open set in \(X \), such that \(A \subseteq U \). Since every open set is \(\omega \alpha \)-open set and \(A \) is \(g\omega \alpha \)-closed, we have \(\alpha \text{cl}(A) \subseteq U \) and hence \(A \) is \(\alpha g \)-closed set in \(X \).

The converse of the above theorem need not be true as seen from the following example.

\textbf{Example 3.7.} Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a\}\} \) then the set \(A = \{a, b\} \) is \(\alpha g \)-closed but not \(g\omega \alpha \)-closed in \(X \).
Remark 3.8. From the theorem 3.4 and 3.6 it follows that $g\omega\alpha$-closed set properly lies between α-closed set and αg-closed set.

Theorem 3.9. Every regular-closed (resp ω-closed, $g\alpha$-closed) set is $g\omega\alpha$-closed set.

Proof: The proof is obvious from theorem 3.2.

The converse of the above theorem need not be true as seen from the following example.

Example 3.10. In Example 3.3 the set $A = \{a, c\}$ is $g\omega\alpha$-closed but not regular-closed (ω-closed, ga-closed) set in X.

Theorem 3.11. Every $g\omega\alpha$-closed set in X is gs-closed (resp gp-closed, gsp-closed, gpr-closed, rg-closed, ωg-closed, αgr-closed, g^*p-closed) set in X.

Proof: Since every open set is $\omega\alpha$-open [5], the proof follows.

The converse of the above theorem need not be true as seen from the following example.

Example 3.12. In Example 3.7, the set $A = \{a, b\}$ is gs-closed (gp-closed, gsp-closed, gpr-closed, rg-closed, ωg-closed, αgr-closed) but not $g\omega\alpha$-closed in X.

Remark 3.14. The concept of $g\omega\alpha$-closed set is independent of the concept of sets namely p-closed, sp-closed, semi-closed, g-closed, sg-closed, g^*-closed, g^*s-closed, $\omega\alpha$-closed sets as seen from the following example.

Example 3.15. In Example 3.10, the set $A = \{a, c\}$ is $g\omega\alpha$-closed but not p-closed, sp-closed, semi-closed, sg-closed, g^*-closed, and the set $B = \{b\}$ is $g\omega\alpha$-closed but not g-closed and g^*-closed in X.

Example 3.16. In Example 3.5, the set $A = \{b\}$ is $g\omega\alpha$-closed but not $\omega\alpha$-closed set in X.

Example 3.17. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{a, c\}\}$ then the set $A = \{a, b, c\}$ is $g\omega\alpha$-closed and sp-closed set in X.

Example 3.18. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ then the set $A = \{a, b\}$ is semi-closed, g^*-closed and g^*s-closed but not $g\omega\alpha$-closed set in X.

Example 3.19. In Example 3.13, the set $A = \{a, b\}$ is g-closed, g^*-closed, and $\omega\alpha$-closed but not $g\omega\alpha$-closed set in X.

Theorem 3.20. Union of two $g\omega\alpha$-closed sets are $g\omega\alpha$-closed set.

Proof: Let A and B be two $g\omega\alpha$-closed sets in (X, τ), let G be any $\omega\alpha$-open set in (X, τ), such that $A \cup B \subseteq G$. Then $A \subseteq G$ and $B \subseteq G$. Since A and B are $g\omega\alpha$-closed sets, $\alpha cl(A) \subseteq G$ and $\alpha cl(B) \subseteq G$. Therefore $\alpha cl(A) \cup \alpha cl(B) = \alpha cl(A \cup B) \subseteq G$. Hence $A \cup B$ is $g\omega\alpha$-closed set.
Theorem 3.21. If a subset A of X is $g\omega\alpha$-closed in (X, τ) then $\alpha cl(A)-A$ does not contain any non empty $\omega\alpha$-closed set in (X, τ).

Proof: Suppose A is $g\omega\alpha$-closed and F be a non empty $\omega\alpha$-closed subset of $\alpha \text{cl}(A)-A$. Then $F \subseteq \alpha \text{cl}(A) \cap (X-A)$. Since $(X-A)$ is $\omega\alpha$-open and A is $g\omega\alpha$-closed, $\alpha \text{cl}(A) \subseteq (X-A)$, therefore $F \subseteq (X-\alpha \text{cl}(A))$. Thus $F \subseteq \alpha \text{cl}(A) \cap (X-\alpha \text{cl}(A)) = \phi$. That is $F = \phi$. Thus $\alpha \text{cl}(A)-A$ does not contain any non-empty $\omega\alpha$-closed set in (X, τ).

However the converse of the above theorem need not be true as seen from the following example.

Example 3.22. In Example 3.17, the set $A = \{a, b\}$ then $\alpha \text{cl}(A)-A = \{c, d\}$ does not contain non empty $\omega\alpha$-closed set. But A is not $g\omega\alpha$-closed set in (X, τ).

Theorem 3.23. If A is $g\omega\alpha$-closed set in X and $A \subseteq B \subseteq \alpha \text{cl}(A)$ then B is also $g\omega\alpha$-closed set in X.

Proof: It is given that A is $g\omega\alpha$-closed set in X. To prove B is also $g\omega\alpha$-closed set of X. Let U be an $\omega\alpha$-open set of X, such that $B \subseteq U$. Since $A \subseteq B$, we have $A \subseteq U$. Since A is $g\omega\alpha$-closed, and $\alpha \text{cl}(A) \subseteq U$. Now $\alpha \text{cl}(B) \subseteq \alpha \text{cl}(\alpha \text{cl}(A)) = \alpha \text{cl}(A) \subseteq U$. So $\alpha \text{cl}(B) \subseteq U$. Hence B is $g\omega\alpha$-closed set in X.

However the converse of the above theorem need not be true as seen from the following example.

Example 3.24. In Example 3.5, the set $A = \{a\}$ and $B = \{a, b\}$ such that A and B are $g\omega\alpha$-closed sets but $A \subseteq B \not\subseteq \alpha \text{cl}(A)$.

Theorem 3.25. For each $x \in X$ either x is $\omega\alpha$-closed or x^c is $g\omega\alpha$-closed in X.

Proof: Suppose $\{x\}$ is not $\omega\alpha$-closed in X, then $\{x^c\}$ is not $\omega\alpha$-open and the only $\omega\alpha$-open set containing $\{x^c\}$ is the space X itself. Therefore $\alpha \text{cl}(\{x^c\}) \subseteq X$ and hence $\{x^c\}$ is $g\omega\alpha$-closed set in (X, τ).

Theorem 3.26. Let A be $g\omega\alpha$-closed in (X, τ). Then A is α-closed if and only if $\alpha \text{cl}(A)-A$ is $\omega\alpha$-closed.

Proof: Necessity: Suppose A be α-closed. Then $\alpha \text{cl}(A) = A$ and so $\alpha \text{cl}(A)-A = \phi$, which is $\omega\alpha$-closed.
Sufficiency: Suppose $\alpha \text{cl}(A)-A$ is $\omega\alpha$-closed. Then $\alpha \text{cl}(A)-A = \phi$, since A is $g\omega\alpha$-closed. That is $\alpha \text{cl}(A)-A$ or A is α-closed.

Theorem 3.27. Let $A \subseteq Y \subseteq X$, and suppose that A is $g\omega\alpha$-closed set in X. Then A is $g\omega\alpha$-closed relative to Y.

Proof: Let $A \subseteq Y \cap G$ where G is $\omega\alpha$-open. Then $A \subseteq G$ and hence $\alpha \text{cl}(A) \subseteq G$. This implies that $Y \cap \alpha \text{cl}(A) \subseteq Y \cap G$. Thus A is $g\omega\alpha$-closed relative to Y.

Now we introduce the following.
Definition 3.28. A subset A of a topological space (X, τ) is called $g\omega\alpha$-open set if its compliment A^c is $g\omega\alpha$-closed.

Theorem 3.29. A subset A of (X, τ) is $g\omega\alpha$-open set if and only if $U \subseteq \alpha \text{int}(A)$ whenever U is $\omega\alpha$-closed and $U \subseteq A$.

Proof: Assume that A is $g\omega\alpha$-open in X and U is $\omega\alpha$-closed set of (X, τ) such that $U \subseteq A$. Then $X-A$ is a $g\omega\alpha$-closed set in (X, τ). Also $X-A \subseteq X-U$ and $X-U$ is $\omega\alpha$-open set of (X, τ). This implies that $\alpha\text{cl}(X-A) \subseteq X-U$. But $\alpha\text{cl}(X-A) = X-\alpha\text{int}(A)$. Thus $X-\alpha\text{int}(A) \subseteq X-U$. So $U \subseteq \alpha\text{int}(A)$.

Conversely: Suppose $U \subseteq \alpha\text{int}(A)$ whenever U is $\omega\alpha$-closed and $U \subseteq A$. To prove that A is $g\omega\alpha$-open. Let G be $\omega\alpha$-open set of (X, τ) such that $X-A \subseteq G$. Then $X-G \subseteq \alpha\text{int}(A)$. So $X-G \subseteq \alpha\text{int}(A)$, $X-\alpha\text{int}(A) \subseteq G$. But $\alpha\text{cl}(X-A) = X-\alpha\text{int}(A)$. Thus $\alpha\text{cl}(X-A) \subseteq G$. That is $X-A$ is $g\omega\alpha$-closed set and hence A is $g\omega\alpha$-open.

Theorem 3.30. If A is $\omega\alpha$-open and $g\omega\alpha$-closed set then A is α-closed.

Proof: Since $A \subseteq A$ and A is $\omega\alpha$-open and $g\omega\alpha$-closed, we have $\alpha\text{cl}(A) \subseteq A$. Thus $\alpha\text{cl}(A) = A$. Hence A is α-closed set of (X, τ).

Theorem 3.31. A regular open $g\omega\alpha$-closed set is preclosed and hence clopen.

Proof: Let A be regular open $g\omega\alpha$-closed. Since regular open set is $\omega\alpha$-open, $\alpha\text{cl}(A) \subseteq A$. This implies A is α-closed. Since every α-closed (regular) open set is (regular) closed, A is clopen.

Theorem 3.32. A set A is $g\omega\alpha$-open in (X, τ) if and only if $F \subseteq \alpha\text{int}(A)$ whenever F is $\omega\alpha$-closed in (X, τ) and $F \subseteq A$.

Proof: Suppose $F \subseteq \alpha\text{int}(A)$ where F is $\omega\alpha$-closed and $F \subseteq A$. Let $X-A \subseteq G$ where G is $\omega\alpha$-open in (X, τ). Then $G \subseteq X-G$ and $X-G \subseteq \alpha\text{int}(A)$. Thus $X-A$ is $g\omega\alpha$-closed in (X, τ). Hence A is $g\omega\alpha$-open in (X, τ).

Conversely: Suppose that A is $g\omega\alpha$-open. $F \subseteq A$ and F is $\omega\alpha$-closed in (X, τ). Then $X-F$ is $\omega\alpha$-open and $X-A \subseteq X-F$. Therefore $\alpha\text{cl}(X-A) \subseteq X-F$. But $\alpha\text{cl}(X-A) = X-\alpha\text{int}(A)$. Hence $F \subseteq \alpha\text{int}(A)$.

Theorem 3.33. A subset A is $g\omega\alpha$-open in (X, τ) if and only if $G = X$ whenever G is $\omega\alpha$-open and $\alpha\text{int}(A) \cup (X-G) \subseteq G$.

Proof: Let A be $g\omega\alpha$-open. G be $\omega\alpha$-open and $\alpha\text{int}(A) \cup (X-A) \subseteq G$. This gives $X-G \subseteq (X-\alpha\text{int}(A)) \cap (X-(X-A)) = X-\alpha\text{int}(A)-(X-A) = \alpha\text{cl}(X-A)-(X-A)$. Since $X-A$ is $g\omega\alpha$-closed and $X-G$ is $\omega\alpha$-closed. Then by theorem 3.32 it follows that $X-G = \phi$. Therefore $X = G$.

Conversely: Suppose F is $\omega\alpha$-closed and $F \subseteq A$. Then $\alpha\text{int}(A) \cup (X-A) \subseteq \alpha\text{int}(A) \cup (X-F)$. It follows that $\alpha\text{int}(A) \cup (X-F) = X$ and hence $F \subseteq \alpha\text{int}(A)$. Therefore A is $g\omega\alpha$-open in (X, τ).
4 gωα-Closure and gωα-Interior

In this section the notion of gωα-closure and gωα-interior is defined and some of its basic properties are studied.

Definition 4.1. For a subset A of (X, τ) $g\omega\alpha$-closure of A is denoted by $g\omega\alpha cl(A)$ and is defined as $g\omega\alpha cl(A) = \bigcap \{ G; A \subseteq G, G$ is $g\omega\alpha$-closed in $(X, \tau)\}$.

Theorem 4.2. For an $x \in X$, $x \in g\omega\alpha cl(A)$ if and only if $A \cap V \neq \emptyset$ for every $g\omega\alpha$-open set V containing x.

Proof: Let $x \in g\omega\alpha cl(A)$. Suppose there exists a $g\omega\alpha$-open set V containing x such that $V \cap A = \emptyset$. Then $A \subseteq X-V$, $g\omega\alpha cl(A) \subseteq X-V$. This implies $x \notin g\omega\alpha cl(A)$ which is a contradiction. Hence $A \cap V \neq \emptyset$.

Conversely, Suppose $x \notin g\omega\alpha cl(A)$ then there exists $g\omega\alpha$-closed set G containing A such that $x \notin G$. Then $x \in X-G$ and $X-G$ is $g\omega\alpha$-open. Also $(X-G) \cap A = \emptyset$ which is a contradiction to the hypothesis, Hence $x \in g\omega\alpha cl(A)$.

Theorem 4.3. If $A \subseteq X$, then $A \subseteq g\omega\alpha cl(A) \subseteq \text{cl}(A)$.

Proof: Since every closed set is $g\omega\alpha$-closed, the proof follows.

Remark 4.4. Both containment relations in the theorem 4.3 may be proper as seen from the following example.

Example 4.5. In Example 3.10, the set $A = \{a\}$ then $g\omega\alpha cl(A) = \{a, c\}$ and $\text{cl}(A) = X$, and so $A \subseteq g\omega\alpha cl(A) \subseteq \text{cl}(A)$.

Theorem 4.6. If A is $g\omega\alpha$-closed, then $g\omega\alpha cl(A) = A$.

Proof: Let A be $g\omega\alpha$-closed set in (X, τ). Since $A \subseteq A$ and A is $g\omega\alpha$-closed set, $A \in \{ G; A \subseteq G, G$ is $g\omega\alpha$-closed set $\}$ which implies that $A = \bigcap \{ G; A \subseteq G, G$ is $g\omega\alpha$-closed set $\} \subseteq A$, that is $g\omega\alpha cl(A) \subseteq A$. But $A \subseteq g\omega\alpha cl(A)$ is always true. Hence $A = g\omega\alpha cl(A)$.

Theorem 4.7. If $A \subseteq X$ and A is $g\omega\alpha$-closed, then $g\omega\alpha cl(A)$ is the smallest $g\omega\alpha$-closed subset of X containing A.

Proof: Let A be $g\omega\alpha$-closed set in (X, τ). Then $g\omega\alpha cl(A) = \bigcap \{ G; A \subseteq G, G$ is $g\omega\alpha$-closed in $(X, \tau)\}$. Since $A \subseteq A$ and A is $g\omega\alpha$-closed set, $g\omega\alpha cl(A) = A$ is the smallest $g\omega\alpha$-closed subset of X containing A.

However the converse of the above theorem need not be true as seen from the following example.

Example 4.8. In Example 3.13, the set $A = \{a, c\}$ then $g\omega\alpha cl(A) = X$, which is the smallest $g\omega\alpha$-closed set in X containing A but A is not $g\omega\alpha$-closed in (X, τ).

Remark 4.9. The following example shows that for any two subsets A and B of X, $A \subseteq B$ implies $g\omega\alpha cl(A) \neq g\omega\alpha cl(B)$.
Example 4.10. In example 3.13, the set \(A = \{ c \} \) and \(B = \{ a, c \} \) then \(A \subseteq B \). Now \(g_{\omega cl}(A) = \{ c \} \) and \(g_{\omega cl}(B) = X \). Hence \(g_{\omega cl}(A) \neq g_{\omega cl}(B) \).

Remark 4.11. For a subset \(A \) of \((X, \tau)\) \(g_{\omega cl}(A) \neq \text{cl}(A) \) as seen from the following example.

Example 4.12. In Example 3.13, the set \(A = \{ c \} \subseteq X \), \(g_{\omega cl}(A) = \{ c \} \) and \(\text{cl}(A) = \{ b, c \} \). Therefore \(g_{\omega cl}(A) \neq \text{cl}(A) \).

Remark 4.13. For any two subsets \(A \) and \(B \) of \((X, \tau)\), \(g_{\omega cl}(A) = g_{\omega cl}(B) \) does not imply that \(A = B \). This is shown by the following example.

Example 4.14. In Example 3.7, the set \(A = \{ a \} \) and \(B = \{ a, c \} \) then \(g_{\omega cl}(A) = g_{\omega cl}(B) \). But \(A \neq B \).

Theorem 4.15. Let \(A \) and \(B \) be the subsets of \((X, \tau)\), Then,
1. \(g_{\omega cl}(\phi) = \phi \).
2. \(g_{\omega cl}(X) = X \).
3. \(g_{\omega cl}(A) \) is \(g_{\omega cl} \)-closed set in \((X, \tau)\).
4. If \(A \subseteq B \) then \(g_{\omega cl}(A) \subseteq g_{\omega cl}(B) \).
5. \(g_{\omega cl}(A \cup B) = g_{\omega cl}(A) \cup g_{\omega cl}(B) \).
6. \(g_{\omega cl}(g_{\omega cl}(A)) = g_{\omega cl}(A) \).

Proof: Proof of (1), (2), (3) and (4) are obvious from definition 4.1.

(5). We know that \(g_{\omega cl}(A) \subseteq g_{\omega cl}(A \cup B) \) and \(g_{\omega cl}(B) \subseteq g_{\omega cl}(A \cup B) \) \(\Rightarrow \) \(g_{\omega cl}(A) \cup g_{\omega cl}(B) \subseteq g_{\omega cl}(A \cup B) \)--(i). Now we prove \(g_{\omega cl}(A \cup B) \subseteq g_{\omega cl}(A) \cup g_{\omega cl}(B) \). Let \(x \) be any point such that \(x \notin g_{\omega cl}(A) \cup g_{\omega cl}(B) \), then there exists \(g_{\omega cl} \)-closed sets \(P \) and \(Q \) such that \(A \subseteq P \) and \(B \subseteq Q \), \(x \notin P \) and \(Q \), then \(x \notin P \cup Q \), \(A \cup B \subseteq P \cup Q \) and \(P \cup Q \) is \(g_{\omega cl} \)-closed set by Theorem 3.20, thus \(x \notin g_{\omega cl}(A \cup B) \Rightarrow g_{\omega cl}(A \cup B) \subseteq g_{\omega cl}(A) \cup g_{\omega cl}(B) \)--(ii). From (i) and (ii) \(g_{\omega cl}(A \cup B) = g_{\omega cl}(A) \cup g_{\omega cl}(B) \).

(6). Let \(P \) be \(g_{\omega cl} \)-closed set containing \(A \). Then by definition 4.1 \(g_{\omega cl}(A) \subseteq P \). Since \(P \) is \(g_{\omega cl} \)-closed set and contains \(g_{\omega cl}(A) \) and is contained in every \(g_{\omega cl} \)-closed set containing \(A \), it follows \(g_{\omega cl}(g_{\omega cl}(A)) \subseteq g_{\omega cl}(A) \). Therefore \(g_{\omega cl}(g_{\omega cl}(A)) = g_{\omega cl}(A) \).

Theorem 4.16. Let \(A \) and \(B \) be subset of \((X, \tau)\) then \(g_{\omega cl}(A \cap B) \subseteq g_{\omega cl}(A) \cap g_{\omega cl}(B) \).

Proof: Since \(A \cap B \subseteq A \) and \(A \cap B \subseteq B \), by theorem 4.15 (4), \(g_{\omega cl}(A \cap B) \subseteq g_{\omega cl}(A) \) and \(g_{\omega cl}(A \cap B) \subseteq g_{\omega cl}(B) \). Thus \(g_{\omega cl}(A \cap B) \subseteq g_{\omega cl}(A) \cap g_{\omega cl}(B) \).

In general \(g_{\omega cl}(A) \cap g_{\omega cl}(B) \subseteq g_{\omega cl}(A \cap B) \) as seen from the following example.

Example 4.17. In Example 3.18, the set \(A = \{ a \} \) and \(B = \{ b \} \) then \(g_{\omega cl}(A) = \{ a, c \} \) and \(g_{\omega cl}(B) = \{ b, c \} \) and \(g_{\omega cl}(A \cap B) = \phi \). Hence \(g_{\omega cl}(A) \cap g_{\omega cl}(B) \subseteq g_{\omega cl}(A \cap B) \).

Now we introduce the following.
Definition 4.18. For a subset A of (X, τ) $g_{\omega\alpha}$-interior of A is denoted by $g_{\omega\alpha}\text{int}(A)$ and is defined as $g_{\omega\alpha}\text{int}(A) = \cup \{ G; G \subseteq A \text{ and } G \text{ is } g_{\omega\alpha}\text{-open in } (X, \tau) \}$. That is $g_{\omega\alpha}\text{int}(A)$ is the union of all $g_{\omega\alpha}$-open sets contained in A.

Theorem 4.19. Let A be subset of (X, τ) then $g_{\omega\alpha}\text{int}(A)$ is the largest $g_{\omega\alpha}$-open subset of X contained in A if A is $g_{\omega\alpha}$-open.

Proof: Let $A \subseteq X$ be $g_{\omega\alpha}$-open, then $g_{\omega\alpha}\text{int}(A) = \cup \{ G; G \subseteq A \text{ and } G \text{ is } g_{\omega\alpha}\text{-open in } (X, \tau) \}$ Since $A \subseteq A$ and A is $g_{\omega\alpha}$-open, $A = g_{\omega\alpha}\text{int}(A)$ is the largest $g_{\omega\alpha}$-open subset of X contained in A.

The converse of the above theorem need not be true as seen from the following example.

Example 4.20. In Example 3.18, the set $A = \{ b, c \}$, then $g_{\omega\alpha}\text{int}(A) = \{ b \}$ is $g_{\omega\alpha}$-open in (X, τ), but A is not $g_{\omega\alpha}$-open in (X, τ).

Remark 4.21. For any subset A of X, $\text{int}(A) \subseteq g_{\omega\alpha}\text{int}(A) \subseteq A$.

Remark 4.22. For a subset A of X, $g_{\omega\alpha}\text{int}(A) \neq \text{int}(A)$ as seen from the following example.

Example 4.23. In Example 3.5, the set $A = \{ b \}$, then $g_{\omega\alpha}\text{int}(A) = \{ b \}$ and $\text{int}(A) = \phi$ hence $g_{\omega\alpha}\text{int}(A) \neq \text{int}(A)$.

Remark 4.24. For any two subsets A and B of X $g_{\omega\alpha}\text{int}(A) = g_{\omega\alpha}\text{int}(B)$ does not imply that $A = B$. That is shown by the following example.

Example 4.25. In Example 3.7, the set $A = \{ b \}$ and $B = \{ c \}$ then $g_{\omega\alpha}\text{int}(A) = \phi = g_{\omega\alpha}\text{int}(B)$. But $A \neq B$.

Remark 4.26. For any two subsets A and B of X, $g_{\omega\alpha}\text{int}(A) \cup g_{\omega\alpha}\text{int}(B) \neq g_{\omega\alpha}\text{int}(A \cup B)$.

Example 4.27. In Example 3.18 the set $A = \{ b, c \}$ and $B = \{ a, c \}$ now $g_{\omega\alpha}\text{int}(A) = \{ b \}$ and $g_{\omega\alpha}\text{int}(B) = \{ a \}$ and $g_{\omega\alpha}\text{int}(A \cup B) = g_{\omega\alpha}\text{int}X = X$. Hence $g_{\omega\alpha}\text{int}(A) \cup g_{\omega\alpha}\text{int}(B) \neq g_{\omega\alpha}\text{int}(A \cup B)$.

Theorem 4.28. For any subset A of X $[X-g_{\omega\alpha}\text{int}(A)] = [g_{\omega\alpha}\text{cl}(X-A)]$.

Proof: Let $X \in X-g_{\omega\alpha}\text{int}(A)$, then X is not in $g_{\omega\alpha}\text{int}(A)$, that is every $g_{\omega\alpha}$-open set G containing x is such that $G \subseteq A$. This implies every $g_{\omega\alpha}$-open set G containing x intersects $X-A$. That is $G \cap (X-A) \neq \phi$. Then by theorem 4.2 $x \in g_{\omega\alpha}\text{cl}(X-A)$ and therefore $[X-g_{\omega\alpha}\text{int}(A)] \subseteq [g_{\omega\alpha}\text{cl}(X-A)]$.

Conversely; Let $x \in g_{\omega\alpha}\text{cl}(X-A)$, then every $g_{\omega\alpha}$-open set G containing x intersects $X-A$. That is, $G \cap (X-A) \neq \phi$. That is every $g_{\omega\alpha}$-open set G containing x is such that $G \subseteq A$. Then by definition 4.18, x not in $g_{\omega\alpha}\text{int}(A)$, that is $x \in [X-g_{\omega\alpha}\text{int}(A)]$; and so $[g_{\omega\alpha}\text{cl}(X-A)] \subseteq [X-g_{\omega\alpha}\text{int}(A)]$. Thus $[X-g_{\omega\alpha}\text{int}(A)] = [g_{\omega\alpha}\text{cl}(X-A)]$.
5 gωα-Neighborhoods and gωα-Limit points

In this section we define the notion of gωα-neighborhood, gωα-limit point and gωα-derived set of a set and show some of their basic properties and analogous to those for open sets.

Definition 5.1. Let (X, τ) be a topological space and let x ∈ X. A subset N of X is said to be gωα-neighborhood of a point x ∈ X if there exists an gωα-open set G such that x ∈ G ⊆ N.

Definition 5.2. Let (X, τ) be a topological space and A be a subset of X, A subset N of X is said to be gωα-neighborhood of A if there exists an gωα-open set G such that A ∈ G ⊆ N.

The collection of all gωα-neighborhood of x ∈ X is called the gωα-neighborhood system at x and shall be denoted by gωαN(x).

Theorem 5.3. A subset A of a topological space is gωα-open if it is a gωα-neighborhood of each of its points.

Proof: Let a subset G of a topological space be gωα-open. Then for every x ∈ X, x ∈ G ⊆ G, and therefore G is a gωα-neighborhood of each of its points.

The converse of the above theorem need not be true as seen from the following example.

Example 5.4. In Example 3.7 the set A = {b, c} is gωα-neighborhood of each of its points b and c but A is not gωα-open.

Theorem 5.5. Let (X, τ) be a topological space. If A is gωα-closed subset of X and x ∈ gωαcl(A) if and only if for any gωα-neighborhood N of x in (X, τ), N ∩ A ≠ φ.

Proof: Let us assume that there is a gωα-neighborhood N of the point x in (X, τ) such that N ∩ A = φ. There exist an gωα-open set G of X such that X ∈ G ⊆ N. Therefore we have G ∩ A = φ and so x ∈ X-G. Then gωαcl(A) ∈ X-G and therefore x ∉ gωαcl(A), which is the contradiction to the hypothesis x ∈ gωαcl(A). Therefore N ∩ A ≠ φ.

Conversely: Suppose that x ∉ gωαcl(A). Then there exists a gωα-closed set G of (X, τ) such that A ⊆ G and x ∉ G. Thus x ∈ X-G and X-G is gωα-open in (X, τ) and hence X-G is a gωα-neighborhood of x in (X, τ). But A ∩ (X-G) = φ which is a contradiction. Hence x ∈ gωαcl(A).

Theorem 5.6. Let (X, τ) be a topological space and x ∈ X. Let gωαN(x) be the collection of all gωα-neighborhood of x. Then,
1. gωαN(x) ≠ φ and x ∈ each member of gωαN(x).
2. The intersection of the any two members of gωαN(x) is again a member of gωαN(x).
3. If N ∈ gωαN(x) and M ⊆ N, then M ∈ gωαN(x).
4. Each member N ∈ gωαN(x) is a superset of a member G ∈ gωαN(x) where G is a gωα-open set.
Proof: (1). Since X is $g\omega$-open set containing p, it is a $g\omega$-neighborhood of every $p \in X$. Hence there exists at least one $g\omega$-neighborhood namely X for each $p \in X$ there is $g\omega N(p) \neq \emptyset$. Let $N \in g\omega N(p)$, N is a $g\omega$-neighborhood of p, then there exists a $g\omega$-open set G such that $p \in G \subseteq N$ so $p \in N$. Therefore $p \in \text{every member } N \text{ of } g\omega N(p)$.

(2). Let $N \in g\omega N(p)$ and $M \in g\omega N(p)$. Then by definition 5.1, there exists $g\omega$-open set G and F such that $p \in G \subseteq N$ and $p \in F \subseteq M$. Hence $p \in G \cap F \subseteq M \cap N$. Note that $G \cap F$ is a $g\omega$-neighborhood of p. Therefore it follows that $N \cap M$ is a $g\omega$-neighborhood of p. Hence $N \cap M \in g\omega N(p)$.

(3). If $N \in g\omega N(p)$ then there is an $g\omega$-open set G such that $p \in G \subseteq N$. Since $M \subseteq N$, M is a $g\omega$-neighborhood of p. Hence $M \in g\omega N(p)$.

(4). Let $N \in g\omega N(p)$ then there exists a $g\omega$-open set G, such that $p \in G \subseteq N$. Since G is $g\omega$-open and $p \in G$, G is $g\omega$-neighborhood of P. Therefore $G \in g\omega N(p)$ and also $G \subseteq N$.

Definition 5.7. Let (X, τ) be a topological space and A be a subset of X. Then a point $x \in X$ is called a $g\omega$-limit point of A if and only if every $g\omega$-neighborhood of x contains a point of A distinct from x. That is $[N-\{x\}] \cap A \neq \emptyset$ for each $g\omega$-neighborhood N of x. Also equivalently if and only if every $g\omega$-open set G containing x contains a point of A other then x.

In a topological space (X, τ) the set of all $g\omega$-limit points of a given subset A of X is called a $g\omega$-derived set of A and is denoted by $g\omega d(A)$.

Theorem 5.8. Let A and B be subset of a topological space (X, τ). Then,

1. $g\omega d(\emptyset) = \emptyset$.
2. If $A \subseteq B$, then $g\omega d(A) \subseteq g\omega d(B)$.
3. If $x \in g\omega d(A)$, then $x \in g\omega d(A-\{x\})$.
4. $g\omega d(A \cup B) = g\omega d(A) \cup g\omega d(B)$.
5. $g\omega d(A \cap B) \subseteq g\omega d(A) \cap g\omega d(B)$.

Proof: (1). Let x be any point of X and $x \in g\omega d(\emptyset)$. That is x is a $g\omega$-limit point of \emptyset. Then for every $g\omega$-open set G containing x, we should have $[G-\{x\}] \cap \emptyset \neq \emptyset$ which is impossible. Hence $g\omega d(\emptyset) = \emptyset$.

(2). If $x \in g\omega d(A)$, that is if x is a $g\omega$-limit point of A, then by Definition 5.7 $[G-\{x\}] \cap A \neq \emptyset$ for every $g\omega$-open set G containing x. Since $A \subseteq B$ implies $[G-\{x\}] \cap A \subseteq [G-\{x\}] \cap B$. Thus if x is a $g\omega$-limit point of A it is also a $g\omega$-limit point of B, that is $x \in g\omega d(B)$. Hence $g\omega d(A) \subseteq g\omega d(B)$.

(3). If $x \in g\omega d(A)$, by definition 5.7 every $g\omega$-open set G containing x contains at least one point other than x of $A-\{x\}$. Hence x is a $g\omega$-limit point of $A-\{x\}$ and it belongs to $g\omega d[A-\{x\}]$. Therefore $x \in g\omega d(A) \Rightarrow x \in g\omega d[A-\{x\}]$.

(4). Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, from (1) $g\omega d(A) \cup g\omega d(B) \subseteq g\omega d(A \cup B)$. To prove other way if $x \notin g\omega d(A) \cup g\omega d(B)$, then $x \notin g\omega d(A)$ and $x \notin g\omega d(B)$. Hence there exists $g\omega$-neighborhoods G_1 and G_2 of x such that $G_1 \cap [A-\{x\}] = \emptyset$ and $G_2 \cap (B-\{x\}) = \emptyset$. Since $G_1 \cap G_2$ is $g\omega$-neighborhood of x, we have $(G_1 \cap G_2) \cap [(A \cup B)-\{x\}] = \emptyset$. Therefore $x \notin g\omega d(A \cup B)$. Hence $g\omega d(A \cup B) = g\omega d(A) \cup g\omega d(B)$.

(5). Since $A \cup B \subseteq A$ and $A \cap B \subseteq B$, by (2) $g\omega d(A \cap B) \subseteq g\omega d(A)$ and $g\omega d(A \cap B) \subseteq g\omega d(B)$. Consequently $g\omega d(A \cap B) \subseteq g\omega d(A) \cap g\omega d(B)$.
Theorem 5.9. Let (X, τ) be a topological space and A be a subset of X. If A is $g\omega\alpha$-closed, then $g\omega\alpha d(A) \subseteq A$.

Proof: Let A be $g\omega\alpha$-closed. Now we will show that $g\omega\alpha d(A) \subseteq A$. Since A is $g\omega\alpha$-closed, $X-A$ is $g\omega\alpha$-open. To each $x \in X-A$ there exists $g\omega\alpha$-neighborhood G of x such that $G \subseteq X-A$. Since $A \cap (X-A) = \phi$, the $g\omega\alpha$-neighborhood G contains no point of A and so X is not a $g\omega\alpha$-limit point of A. Thus no point of $X-A$ can be $g\omega\alpha$-limit point of A that is, A contains all its $g\omega\alpha$-limit points. that is $g\omega\alpha d(A) \subseteq A$.

Acknowledgement

The authors are greatfull to the referees for their valuable and constructive comments which lead to significant improvement of the paper and to the University Grants Commission, New Delhi, India for its financial support under UGC-SAP-II DRS to the Department of Mathematics, Karnatak University, Dharwad, India. Also this research was supported by the University Grants Commission, New Delhi, India. under No.F.4-1/2006(BSR)/7-101/2007(BSR) dated: 20th June, 2012.

References

