Some Properties of Contra gb-continuous Functions

Metin Akdağ1 Alkan Özkan2

Abstract

We introduce some properties of functions called contra gb-continuous function which is a generalization of contra b-continuous functions [3]. Some characterizations and several properties concerning contra gb- continuous functions are obtained.

Keywords: g-open, g-continuity, contra gb-continuity.

1 Introduction

In 1996, Dontchev [16] introduced the notion of contra continuous functions. In 2007, Caldas, Jafari, Noiri and Simoes [10] introduced a new class of functions called generalized contra continuous (contra g-continuous) functions. They defined a function $f : X \rightarrow Y$ to be contra g- continuous if preimage every open subset of Y is g-closed in X. New types of contra generalized continuity such as contra ag-continuity [23] and contra gs-continuity [17] have been introduced and investigated. Recently, Nasef [30] introduced and studied so-called contra b-continuous functions. After that in 2009, Omari and

1Corresponding Author, Cumhuriyet University, Faculty of Science, Department of Mathematics 58140 Sivas, Turkey (e-mail: makdag@cumhuriyet.edu.tr)

2Cumhuriyet University, Faculty of Science, Department of Mathematics 58140 Sivas, Turkey (e-mail: alkan_mat@hotmail.com)
Noorani [4] have studied further properties of contra b-continuous functions. The purpose of the present paper is to introduce some properties of notion of contra generalized b–continuity (contra gb–continuity) via the concept of gb–open sets in [3] and investigate some of the fundamental properties of contra gb–continuous functions. It turns out that contra gb–continuity is stronger than contra $g\beta$–continuity and weaker than both contra gp–continuity and contra gs–continuity [17].

2 Preliminaries

Throughout the paper, the space X and Y (or (X, τ) and (Y, σ)) stand for topological spaces with no separation axioms assumed unless otherwise stated. Let A be a subset of a space X. The closure and interior of A are denoted by $cl(A)$ and $int(A)$, respectively.

Definition 2.1. A subset A of a space X is said to be:

(a) regular open [33] if $A = int(cl(A))$
(b) α–open [31] if $A \subset int(cl(int(A)))$
(c) semi-open [24] if $A \subset cl(int(A))$
(d) pre-open [28] or nearly open [19] if $A \subset int(cl(A))$
(e) β–open [1] or semi-β–open [6] if $A \subset cl(int(cl(A)))$
(f) b–open [7] or sp–open [18] or γ–open [19] if $A \subset cl(int(A)) \cup int(cl(A))$.

The family of all semi-open (resp. pre-open, α-open, β–open, γ–open) sets of (X, τ) will be denoted by $SO(X, \tau)$ (resp. $PO(X, \tau)$, $\alpha O(X, \tau)$, $\beta O(X, \tau)$, $\gamma O(X, \tau)$). It is shown in [31] that $\alpha O(X, \tau)$ is a topology denoted by τ^α and it is stronger than the given topology on X. The complement of a regular-open (resp. semi-open, pre-open, α-open, β-open, γ-open) set is said to be regular closed (resp. semi-closed, preclosed, α-closed, β-closed, γ-closed). The collection of all closed subsets of X will be denoted by $C(X)$. We set $C(X, x) = \{ V \in C(X) : x \in V \}$ for $x \in X$. We define similarly $\gamma O(X, x)$.

The complement of b-open set is said to be b-closed [7]. The intersections of all b-closed sets of X containing A is called the b–closure of A and is denoted by $bel(A)$. The union of all b-closed sets X contained in A is called b-interior of A and is denoted by $bint(A)$.

Definition 2.2. [30] A function $f : (X, \tau) \to (Y, \sigma)$ is called contra b-continuous if the preimage of every open subset of Y is b-closed in X.

Definition 2.3. [21] Let X be a space. A subset A of X is called a generalized b-closed set (simply; gb-closed set) if $bel(A) \subset U$ whenever $A \subset U$ and U is open.

The complement of a generalized b-closed set is called generalized b-open (simply; gb-open). Every b-closed set is gb-closed, but the converse is not true. And the collection of all gb-closed (resp. gb-open) subsets of X is denoted by $gbC(X)$ (resp. $gbO(X)$).

Example 2.4. [5] Let $X = \{a, b, c\}$ and let $\tau = \{\emptyset, \{a\}, X\}$, then the family of all b-closed set of X is $bC(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{b, a\}, \{a, c\}\}$ but the family of all gb-closed set of X is $gbC(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, c\}\}$. Then it is clear that $\{a, c\}$ is gb-closed but not b-closed in X.

41
Lemma 2.5. Let \((X, \tau)\) be a topological space.
(a) The intersections of a \(b\)-open set and a \(gb\)-open set is a \(gb\)-open set.
(b) The union of any family of \(gb\)-open sets is a \(gb\)-open set.

Proof. The statements are proved by using the same method as in proving the corresponding results for the class of \(b\)-open sets (see [7]).

3 Contra \(gb\)-continuous functions

In this section, we introduce some properties of continuity called contra \(gb\)-continuity which is weaker than both of contra \(gs\)-continuity and contra \(gp\)-continuity and stronger than contra \(g\beta\)-continuity.

Definition 3.1. [3] A function \(f : (X, \tau) \to (Y, \sigma)\) is called contra \(gb\)-continuous if the preimage of every open subset of \(Y\) is \(gb\)-closed in \(X\).

Corollary 3.2. If a function \(f : (X, \tau) \to (Y, \sigma)\) is contra \(b\)-continuous, then \(f\) is contra \(gb\)-continuous.

Proof. Obvious.

Note that the converse of the above is not necessary true as shows by the following example:

Example 3.3. Let \(X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}\) and \(\sigma = \{\emptyset, \{a, c\}, X\}\). Then the identity function \(f : (X, \tau) \to (X, \sigma)\) is contra \(gb\)-continuous but not contra \(b\)-continuous, since \(A = \{a, c\} \in \sigma\) but \(A\) is not \(b\)-closed in \((X, \tau)\).

Definition 3.4. Let \(A\) be a subset of a space \((X, \tau)\).
(a) The set \(\cap\{U \in \tau : A \subset U\}\) is called the kernel of \(A\) [29] and is denoted by \(\ker(A)\). In [25] the kernel of \(A\) is called the \(\Lambda\)-set.
(b) The set \(\cap\{F \subset X : A \subset F, F\) is \(gb\)-closed\} is called the \(gb\)-closure of \(A\) and is denoted by \(\text{gbcl}(A)\) [21].
(c) The set \(\cup\{G \subset X : G \subset A, G\) is \(gb\)-open\} is called the \(gb\)-interior of \(A\) and is denoted by \(\text{gbint}(A)\) [21].

Lemma 3.5. For an \(x \in X, x \in \text{gbcl}(A)\) if and only if \(U \cap A \neq \emptyset\) for every \(gb\)-open set \(U\) containing \(x\).

Proof. (Necessity) Suppose there exists a \(gb\)-open set \(U\) containing \(x\) such that \(U \cap A = \emptyset\). Since \(A \subset X - U, \text{gbcl}(A) \subset X - U\). This implies \(x \notin \text{gbcl}(A)\), a contradiction.
(Sufficiency) Suppose \(x \notin \text{gbcl}(A)\). Then there exists a \(gb\)-closed subset \(F\) containing \(A\) such that \(x \notin F\). Then \(x \in X - F\) and \(X - F\) is \(gb\)-open also \((X - F) \cap A = \emptyset\), a contradiction.
Lemma 3.6. [22] The following properties hold for subsets A, B of a space X:

(a) $x \in \ker(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X, x)$.
(b) $A \subset \ker(A)$ and $A = \ker(A)$ if A is open in X.
(c) If $A \subset B$, then $\ker(A) \subset \ker(B)$.

Theorem 3.7. For a function $f : (X, \tau) \to (Y, \sigma)$, the following continuities are equivalent:

(a) f is contra gb-continuous;
(b) For every closed subsets F of Y, $f^{-1}(F) \in gbO(X, x)$;
(c) For each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in gbO(X, x)$ such that $f(U) \subset F$;
(d) $f(gbcl(A)) \subset \ker(f(A))$ for every subset A of X;
(e) $gbcl(f^{-1}(B)) \subset f^{-1}(\ker(B))$ for every subset B of Y.

Proof. The implications $(a) \Leftrightarrow (b)$ and $(b) \Rightarrow (c)$ are obvious.

$(c) \Rightarrow (b)$: Let F be any closed set of Y and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in gbO(X, x)$ such that $f(U_x) \subset F$. Therefore, we obtain $f^{-1}(F) = \cup \{U_x : x \in f^{-1}(F)\}$ which is gb-open in X.

$(b) \Rightarrow (d)$: Let A be any subset of X. Suppose that $y \notin \ker(f(A))$. Then by Lemma 3.6 there exists $F \in C(Y, y)$ such that $f(A) \cap F = \emptyset$. Thus, we have $A \cap f^{-1}(F) = \emptyset$ and $gbcl(A) \cap f^{-1}(F) = \emptyset$. Therefore, we obtain $f(gbcl(A)) \cap F = \emptyset$ and $y \notin f(gbcl(A))$. This implies that $f(gbcl(A)) \subset \ker(f(A))$.

$(d) \Rightarrow (e)$: Let B be any subset of Y. By (d) and Lemma 3.6, we have $f(gbcl(f^{-1}(B))) \subset \ker(f^{-1}(B)) \subset \ker(B)$ and $gbcl(f^{-1}(B)) \subset f^{-1}(\ker(B))$.

$(e) \Rightarrow (a)$: Let V be any open set of Y. Then, by Lemma 3.6, we have $gbcl(f^{-1}(V)) \subset f^{-1}(V)$ and $gbcl(f^{-1}(V)) = f^{-1}(V)$. This shows that $f^{-1}(V)$ is gb-closed in X. \qed

Definition 3.8. [4] A function $f : (X, \tau) \to (Y, \sigma)$ is called gb-continuous if the preimage of every open subset of Y is gb-open in X.

Remark 3.9. The following two examples will show that the concept of gb-continuity and contra gb-continuity are independent from each other.

Example 3.10. Let $X = \{a, b\}$ be the Sierpinski space with the topology $\tau = \{\emptyset, \{a\}, X\}$. Let $f : (X, \tau) \to (X, \tau)$ be defined by: $f(a) = b$ and $f(b) = a$. It can be easily observed that f is contra gb-continuous. But f is not gb-continuous, since $\{a\}$ is open and its preimage $\{b\}$ is not gb-open.

Example 3.11. The identity function on the real line with the usual topology is continuous [23, Example 2] and hence gb-continuous. The inverse image of $(0, 1)$ is not gb-closed and the function is not contra gb-continuous.

Definition 3.12. A subset A of a space (X, τ) is called

(a) a generalized semiclosed set (briefly gs-closed) [8] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open;
(b) an α-generalized closed set (briefly αg-closed) [25] if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is open;
(c) a generalized pre-closed set (briefly gp-closed) [26] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open;
(d) a generalized β-closed set (briefly $g\beta$-closed) [12] if $\beta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 3.13. A function $f : (X, \tau) \to (Y, \sigma)$ is called contra αq-continuous [23] (resp. contra gs-continuous [17], contra gp-continuous, contra $g\beta$-continuous) if the preimage of every open subset of Y is αq-closed (resp. gs-closed, gp-closed, $g\beta$-closed) in X.

We obtain the following diagram by using Definition 2.1, 2.3, 3.1, 3.12 and 3.13.

\[
\begin{array}{ccc}
\text{contra continuous} & \downarrow & \text{contra αq-continuous} \\
\text{contra gs-continuous} & \leftarrow & \text{contra gp-continuous} \\
\text{contra gb-continuous} & \leftarrow & \text{contra $g\beta$-continuous}
\end{array}
\]

However, the converses are not true in general as shown by the following examples.

Example 3.14. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is contra αq-continuous but not contra continuous.

Example 3.15. Let $X = \{a, b\}$ with the indiscrete topology τ and $\sigma = \{\emptyset, \{a\}, X\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is contra gb-continuous but not contra gs-continuous, since $A = \{a\} \in \sigma$ but A is not gs-closed in (X, τ).

Example 3.16. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, b, c\}, \{b, c, d\}, X\}$. Define a function $f : (X, \tau) \to (X, \tau)$ as follows: $f(a) = b$, $f(b) = a$, $f(c) = d$ and $f(d) = c$. Then f is contra gs-continuous. However, f is not contra αq-continuous, since $\{c, d\}$ is a closed set of (X, τ) and $f^{-1}(\{c, d\}) = \{c, d\}$ is not αq-open.

Example 3.17. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $Y = \{1, 2\}$ be the Sierpinski space with the topology $\sigma = \{\emptyset, \{1\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by: $f(a) = 1$ and $f(b) = f(c) = 2$. Then f is contra gb-continuous but not contra gp-continuous.

Theorem 3.18. If a function $f : X \to Y$ is contra gb-continuous and Y is regular, then f is gb-continuous.

Proof. Let x be an arbitrary point of X and V be an open set of Y containing $f(x)$. Since Y is regular, there exists an open set G in Y containing $f(x)$ such that $cl(G) \subseteq V$. Since f is contra gb-continuous, so by Theorem 3.7 there exists $U \in gbO(X, x)$ such that $f(U) \subseteq cl(G)$. Then $f(U) \subseteq cl(G) \subseteq V$. Hence, f is gb-continuous.

44
Definition 3.19. A space (X, τ) is said to be:

(a) gb-space if every gb-open set of X is open in X,

(b) locally gb-indiscrete if every gb-open set of X is closed in X.

The following two results follow immediately from Definition 3.19.

Theorem 3.20. If a function $f : X \to Y$ is contra gb-continuous and X is gb-space, then f is contra continuous.

Proof. Let $V \in O(Y)$. Then $f^{-1}(V)$ is gb-closed in X. Since X is gb-space, $f^{-1}(V)$ is closed in X. Thus, f is contra continuous. \[\square\]

Theorem 3.21. Let X be locally gb-indiscrete. If a function $f : X \to Y$ is contra gb-continuous, then it is continuous.

Proof. Let $V \in O(Y)$. Then $f^{-1}(V)$ is gb-closed in X. Since X is locally gb-indiscrete space, $f^{-1}(V)$ is open in X. Thus, f is continuous. \[\square\]

Recall that for a function $f : X \to Y$, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G_f.

Definition 3.22. The graph G_f of a function $f : X \to Y$ is said to be contra gb-closed if for each $(x, y) \in (X \times Y) - G_f$ there exists $U \in gbO(X, x)$ and $V \in C(Y, y)$ such that $(U \times V) \cap G_f = \emptyset$.

Lemma 3.23. The graph G_f of a function $f : X \to Y$ is contra gb-closed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) - G_f$ there exist $U \in gbO(X, x)$ and $V \in C(Y, y)$ such that $f(U) \cap V = \emptyset$.

Theorem 3.24. If a function $f : X \to Y$ is contra gb-continuous and Y is Urysohn, then G_f is contra gb-closed in the product space $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G_f$. Then $y \neq f(x)$ and there exist open sets H_1, H_2 such that $f(x) \in H_1$, $y \in H_2$ and $cl(H_1) \cap cl(H_2) = \emptyset$. From hypothesis, there exists $V \in gbO(X, x)$ such that $f(V) \subset cl(H_1)$. Therefore, we obtain $f(V) \cap cl(H_2) = \emptyset$. This shows that G_f is contra gb-closed. \[\square\]

Theorem 3.25. If $f : X \to Y$ is gb-continuous and Y is T_1, then G_f is contra gb-closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G_f$. Then $y \neq f(x)$ and there exist open set V of Y such that $f(x) \in V$ and $y \notin V$. Since f is gb-continuous, there exists $U \in gbO(X, x)$ such that $f(U) \subseteq V$. Therefore, we obtain $f(U) \cap (Y - V) = \emptyset$ and $(Y - V) \in C(Y, y)$. This shows that G_f is contra gb-closed in $X \times Y$. \[\square\]

Definition 3.26. [16] A space X is said to be strongly S-closed if every closed cover of X has a finite subcover.
Theorem 3.27. If \((X, \tau_{gb})\) is a topological space and \(f : X \to Y\) has a contra gb-closed graph, then the inverse image of a strongly S-closed set \(A\) of \(Y\) is gb-closed in \(X\).

Proof. Assume that \(A\) is a strongly S-closed set of \(Y\) and \(x \notin f^{-1}(A)\). For each \(a \in A\), \((x, a) \notin G_f\). By Lemma 3.23 there exist \(U_a \in \text{gbO}(X, x)\) and \(V_a \in C(Y, a)\) such that \(f(U_a) \cap V_a = \emptyset\). Then \((A \cap V_a : a \in A)\) is a closed cover of the subspace \(A\), since \(A\) is strongly S-closed, then there exists a finite subset \(A_0 \subset A\) such that \(A \subset \bigcup\{V_a : a \in A_0\}\). Set \(U = \cap\{U_a : a \in A_0\}\), but \((X, \tau_{gb})\) is a topological space, then \(U \in \text{gbO}(X, x)\) and \(f(U) \cap A \subset f(U_a) \cap \bigcup\{V_a : a \in A_0\}\) = \(\emptyset\). Therefore, \(U \cap f^{-1}(A) = \emptyset\) and hence \(x \notin \text{gbcl}(f^{-1}(A))\). This show that \(f^{-1}(A)\) is gb-closed.

Theorem 3.28. Let \(Y\) be a strongly S-closed space. If \((X, \tau_{gb})\) is a topological space and \(f : X \to Y\) has a contra gb-closed graph, then \(f\) is contra gb-continuous.

Proof. Suppose that \(Y\) is strongly S-closed and \(G_f\) is contra gb-closed. First we show that an open set of \(Y\) is strongly S-closed. Let \(U\) be an open set of \(Y\) and \(\{V_i : i \in I\}\) be a cover of \(U\) by closed sets \(V_i\) of \(U\). For each \(i \in I\), there exists a closed set \(K_i\) of \(X\) such that \(V_i = K_i \cap U\). Then the family \(\{K_i : i \in I\} \cup (Y - U)\) is a closed cover of \(Y\). Since \(Y\) is strongly S-closed, there exists a finite subset \(I_0 \subset I\) such that \(Y = \cup\{K_i : i \in I_0\} \cup (Y - U)\). Therefore, we obtain \(U = \cup\{V_i : i \in I_0\}\). This shows that \(U\) is strongly S-closed. By Theorem 3.27, \(f^{-1}(U)\) is gb-closed in \(X\) for every open \(U\) in \(Y\). Therefore, \(f\) is contra gb-continuous.

Theorem 3.29. Let \(f : X \to Y\) be a function and \(g : X \to X \times Y\) the graph function of \(f\), defined by \(g(x) = (x, f(x))\) for every \(x \in X\). If \(g\) is contra gb-continuous, then \(f\) is contra gb-continuous.

Proof. Let \(U\) be an open set in \(Y\), then \(X \times U\) is an open set in \(X \times Y\). Since \(g\) is contra gb-continuous. It follows that \(f^{-1}(U) = g^{-1}(X \times U)\) is an gb-closed in \(X\). Thus, \(f\) is contra gb-continuous.

Theorem 3.30. \(f : X \to Y\) is contra gb-continuous, \(g : X \to Y\) contra continuous, and \(Y\) is Urysohn, then \(E = \{x \in X : f(x) = g(x)\}\) is gb-closed in \(X\).

Proof. Let \(x \in X - E\). Then \(f(x) \neq g(x)\). Since \(Y\) is Urysohn, there exists open sets \(V\) and \(W\) such that \(f(x) \in V, g(x) \in W\) and \(cl(V) \cap cl(W) = \emptyset\). Since \(f\) is contra gb-continuous, then \(f^{-1}(cl(V))\) is gb-open in \(X\) and \(g\) is contra continuous, then \(g^{-1}(cl(W))\) is open in \(X\). Let \(U = f^{-1}(cl(V))\) and \(G = g^{-1}(cl(W))\). Then \(U\) and \(G\) contain \(x\). Set \(A = U \cap G\) is gb-open in \(X\). And \(f(A) \cap g(A) \subset f(U) \cap g(G) \subset cl(V) \cap cl(W) = \emptyset\). Hence \(f(A) \cap g(A) = \emptyset\) and \(A \cap E = \emptyset\) where \(A\) is gb-open therefore \(x \notin \text{gbcl}(E)\). Thus \(E\) is gb-closed in \(X\).

Theorem 3.31. Let \(\{X_i : i \in I\}\) be any family of topological spaces. If \(f : X \to \Pi X_i\) is a contra gb-continuous function. Then \(P_i \circ f : X \to X_i\) is contra gb-continuous for each \(i \in I\), where \(P_i\) is the projection of \(\Pi X_i\) onto \(X_i\).

Proof. We shall consider a fixed \(i \in I\). Suppose \(U_i\) is an arbitrary open set in \(X_i\). Then \(P_i^{-1}(U_i)\) is open in \(\Pi X_i\). Since \(f\) is contra gb-continuous, \(f^{-1}(P_i^{-1}(U_i)) = (P_i \circ f)^{-1}(U_i)\) is gb-closed in \(X\). Therefore \(P_i \circ f\) is contra gb-continuous.
Theorem 3.32. If \(f : X \to Y \) is a contra gb-continuous function and \(g : Y \to Z \) is a continuous function, then \(g\circ f : X \to Z \) is contra gb-continuous.

Proof. Let \(V \in O(Y) \). Then \(g^{-1}(V) \) is open in \(Y \). Since \(f \) is contra gb-continuous,
\[f^{-1}(g^{-1}(V)) = (g\circ f)^{-1}(V) \] is gb-closed in \(X \). Therefore, \(g\circ f : X \to Z \) is contra gb-continuous.

Definition 3.33. A function \(f : X \to Y \) is said to be:
(a) [21] gb-irresolute if the preimage of a gb-open subset of \(Y \) is a gb-open subset of \(X \),
(b) pre–gb-open if image of every gb-open subset of \(X \) is gb-open.

Theorem 3.34. Let \(f : X \to Y \) be surjective gb-irresolute and pre–gb-open and \(g : Y \to Z \) be any function. Then \(g\circ f : X \to Z \) is contra gb-continuous if and only if \(g \) is contra gb-continuous.

Proof. The “if” part is easy to prove. To prove the “only if” part, let \(g\circ f : X \to Z \) be contra gb-continuous and let \(F \) be a closed subset of \(Z \). Then \((g\circ f)^{-1}(F) \) is a gb-open subset of \(X \). That is \(f^{-1}(g^{-1}(F)) \) is gb-open. Since \(f \) is pre–gb-open \(f(f^{-1}(g^{-1}(F))) \) is a gb-open subset of \(Y \). So, \(g^{-1}(F) \) is gb-open in \(Y \). Hence \(g \) is contra gb-continuous.

4 Applications

Definition 4.1. A topological space \(X \) is said to be:
(a) gb-normal if each pair of non-empty disjoint closed sets can be separated by disjoint gb-open sets,
(b) ultranormal [32] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Theorem 4.2. If \(f : X \to Y \) is a contra gb-continuous, closed injection and \(Y \) is ultranormal, then \(X \) is gb-normal.

Proof. Let \(F_1 \) and \(F_2 \) be disjoint closed subsets of \(X \). Since \(f \) is closed and injective,
\(f(F_1) \) and \(f(F_2) \) are disjoint closed subsets of \(Y \). Since \(Y \) is ultranormal \(f(F_1) \) and \(f(F_2) \) are separated by disjoint clopen sets \(V_1 \) and \(V_2 \), respectively. Hence \(F_1 \subset f^{-1}(V_1), F_2 \subset f^{-1}(V_2) \in gbO(X) \) and \(f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset \). Thus \(X \) is gb-normal.

Definition 4.3. [9] A topological space \(X \) is said to be gb-connected if \(X \) is not the union of two disjoint non-empty gb-open subsets of \(X \).

Theorem 4.4. A contra gb-continuous image of a gb-connected space is connected.

Proof. Let \(f : X \to Y \) be a contra gb-continuous function of a gb-connected space \(X \) onto a topological space \(Y \). If possible, let \(Y \) be disconnected. Let \(A \) and \(B \) form a disconnectedness of \(Y \). Then \(A \) and \(B \) are clopen and \(Y = A \cup B \) where \(A \cap B = \emptyset \). Since \(f \) is contra gb-continuous, \(X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \) where \(f^{-1}(A) \) and \(f^{-1}(B) \) are non-empty gb-open sets in \(X \). Also, \(f^{-1}(A) \cap f^{-1}(B) = \emptyset \). Hence \(X \) is non-gb-connected which is a contradiction. Therefore \(Y \) is connected.
Theorem 4.5. Let X be gb-connected and Y be T_1. $f : X \to Y$ is a contra gb-continuous, then f is constant.

Proof. Since Y is T_1 space, $v = \{f^{-1}(y) : y \in Y\}$ is disjoint gb-open partition of X. If $|v| \geq 2$, then X is the union of two non-empty gb-open sets. Since X is gb-connected, $|v| = 1$. Therefore, f is constant.

References

