Syntheses and Structural Characterization of Fırst Paraben Substituted Ferrocenyl Phosphazene Compounds

Yasemin Tümer, Efsun Şehirli, Çiğdem Yüksektepe Ataol
1.047 215

Abstract


Parabens have been regarded as a substitute group to increase DNA interactions as well as cytotoxic and antimicrobial activities of ferrocenylphosphazenes. For this reason,
new ferrocenylphosphazenes compounds bearing paraben (ethyl-4-hydroxybenzoate) have been synthesized for the first time (6-10) and their structures have been determined using elemental analysis, FTIR (Fourier transform), 1H (one-dimensional-1D), 31P NMR techniques and X-ray crystallography (for 9 and 10).


Full Text:

PDF


References


M. Gleria, R. De Jaeger, Applicative Aspect of Cyclophosphazenes, Nova Science Publishers, New York, 2004; references therein. ISBN: 1-59454-026-8.

H.R. Allcock, Chemistry and Applications of Polyphosphazenes, Wiley, Hoboken, New Jersey, 2003. ISBN: 978-0-471-44371-1

A.K. Andrianov, Polyphosphazenes for Biomedical Applications, John Wiley & Sons, Inc, New Jersey, 2009; references therein. ISBN: 978-0-470-19343-3.

Y. Tumer, C. Y. Ataol, H. Bati, N. Calıskan, O. Buyukgungor, Preparation and Characterization of Hexakis[2-methoxy-4-(2,3-dimethylphenylimino)phenylato] cyclotriphosphazene, Phosphorus Sulfur and Silicon and the Related Elements, 2010; 185(12): 2449-2454. DOI:10.1080/10426501003692078.

B. Cosut, S. Yesilot, M. Durmus, A. Kilic, Synthesis and fluorescence properties of hexameric and octameric subphthalocyanines based cyclic phosphazenes, Dyes and Pıgments, 2013; 98(3): 442–449. DOI: 10.1016/j.dyepig.2013.03.028.

D. Bledzka, J. Gromadzinska, W. Wasowicz, Parabens. from environmental studies to human health. Environ. Int., 2014; 67: 27–42. DOI: 10.1016/j.envint.2014.02.007.

A. K. Andrianov, D. P. DeCollibus, H. A. Gillis, H. H. Kha, A. Marin, M. R. Prausnitz, L. A. Babiuk, H. Townsend, G. Mutwiri, Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization, P Natl Acad Scı Usa, 2009; 106 (45): 18936–18941. DOI: 10.1073/pnas.0908842106.

M. L. Stone, A. D. Wilson, M. K. Harrup, F. F. Stewart, An initial study of hexavalent phosphazene salts as draw solutes in forward osmosis, Desalination, 2013; 312: 130–136. DOI: 10.1016/j.desal.2012.09.030.

G. Y. Çiftçi , E. Şenkuytu , S. E. İncir , F. Yuksel, Z. Ölçer, T. Yıldırım, A. Kılıç, Y. Uludağ, First paraben substituted cyclotetraphosphazene compounds and DNA interaction analysis with a new automated biosensor, Biosensors and Bioelectronics, 2016; 80: 331-338. DOI: 10.1016/j.bios.2016.01.061.

H. R. Allcock, S. Kwon, An Ionıcally Cross-Lınkable Polyphosphazene: Poly(Bıs(Carboxylatophenoxy)Phosphazene) and Its Hydrogels and Membranes, Macromolecules, 1989; 22 (1): 75–79. DOI: 10.1021/ma00191a015.

Y. Akgol, C. Hofmann, Y. Karatas, C. Cramer, H.-D. Wiemhofer, M. Schönhoff, Conductivity Spectra of Polyphosphazene-Based Polyelectrolyte Multilayers, J. Phys. Chem. B, 2007; 111: 8532-8539. DOI: 10.1021/jp068872w.

N. Asmafiliz, Z. Kılıç, T. Hökelek, L. Açık, L.Y. Koç, Y. Süzen, Y. Öner, Phosphorus–nitrogen compounds: Part 26. Syntheses, spectroscopic and structural investigations, biological and cytotoxic activities, and DNA interactions of mono and bisferrocenylspirocyclotriphosphazenes, Inorg. Chim. Acta, 2013; 400: 250-261. DOI: 10.1016/j.ica.2013.03.001.

Y. Tumer, N. Asmafiliz, Z. Kılıc, T. Hokelek, L. Y. Koc, L. Acık, M. L. Yola, A. O. Solak, Y. Oner, D. Dundar, M. Yavuz, Phosphorus–nitrogen compounds: Part 28. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing vanillinato and pendant ferrocenyl groups, Journal of Molecular Structure, 2013; 1049: 112–124. DOI: 10.1016.

Y. Tumer, L. Y. Koc, N. Asmafiliz, Z. Kılıc, Tuncer Hokelek, H. Soltanzade, L. Acık, M. L. Yola, A. O. Solak, Phosphorus–nitrogen compounds: part 30. Syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes, J Biol Inorg Chem., 2015; 20: 165–178. DOI:10.1007/s00775-014-1223-5.

E.E. Ilter, N. Asmafiliz, Z. Kılıc, L. Acık, M. Yavuz, E. B. Bali, A.O. Solak, F. Buyukkaya, H. Dal, T. Hokelek, Phosphorus–nitrogen compounds: Part 19. Syntheses, Structural and Electrochemical Investigations, Biological Activities and DNA Interactions of New Spirocyclic monoferrocenylcyclotriphosphazenes, Polyhedron, 2010; 29: 2933-2944. DOI: 10.1016.

L. J. Farrugia, ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J Appl. Cryst., 1997; 30: 565–566.

Y. Tumer, H. Batı, N. Çalışkan, Ç. Yüksektepe, O. Büyükgüngör, Synthesis, Crystal Structure and Characterization of Hexakis[2-methoxy-4-formylphenoxy] cyclotriphosphazene. Z. Anorg. Allg. Chem., 2008; 634(3): 597–599. DOI: 10.1002/zaac.200700389.

A. Kiliç, S. Begeç, B. Çetinkaya, Z. Kiliç, T. Hökelek, N. Gündüz, M. Yildiz, Unusual products in the reactions of hexachlorocyclotriphosphazatriene with sodium aryloxides. Heteroatom Chem., 1996; 7: 249-256. DOI: 10.1002/(SICI)1098-1071(199608) 7:4<249::AID-HC6>3.0.CO;2-0.

G. J. Bullen, An improved determination of the crystal structure of hexachlorocyclotriphosphazene (phosphonitrilic chloride). J. Chem. Soc. A., 1971; 1450-1453. DOI: 10.1039/J19710001450.

A.L. Spek, Acta Cryst., 1990; A 46, C34.

Bruker, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2005.

G.M. Sheldrick,. A short history of SHELX. Acta Crystallogr. Sect. A., 2008; 64: 112–122. DOI:10.1107/S0108767307043930.




J. Turk. Chem. Soc., Sect. A: Chem.