Optimization of doping process parameters of cerium vanadates doped with Be, Mg, Ca, Sr and Ba ions

Gülşah Çelik Gül
1.152 244

Abstract


In this research Taguchi method was applied to determine optimum parameters of doping process of cerium vanadate with Be, Mg, Ca, Sr and Ba ions. Percentage and type of doping ions are used as parameters in optimization process applied as orthogonal array to decrease the number of experiments. The calculated unit cell volume by Rietveld Refinement analysis via X-ray diffraction data (XRD) were used to confirm the formation of doped cerium vanadates. ANOVA method was applied to determine the effectiveness of the parameters. 


Keywords


Cerium vanadate; metal doping; X-ray diffraction; Rietveld refinement method; Taguchi optimization method

Full Text:

PDF


References


Fei NC, Mehat NM, Kamaruddin S. Practical applications of Taguchi method for optimization of processing parameters for plastic injection moulding: a retrospective review. ISRN Industrial Engineering. 2013 June; 2013:462174. DOI: 10.1155/2013/462174.

Dowlatshahi S. An application of design of experiments for optimization of plastic injection molding processes. Journal of Manufacturing Technology Management. 2004 Oct; 15:445–54. DOI: 10.1108/17410380410547852.

Farkas K, Hossmann, T, Plattner B, Ruf L. NWC: node weight computation in MANETs. 16th International Conference on Computer Communications and Networks 2007. 2007 Aug; 1059–64. DOI: 10.1109/ICCCN.2007.4317958.

Rao RS, Kumar CG, Prakasham RS, Hobbs PJ. The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal. Biotechnology Journal. 2008 Apr; 3:510–23. DOI: 10.1002/biot.200700201.

Singh H, Kumar P. Optimizing cutting force for turned parts by Taguchi’s parameter design approach. The Indian Journal of Engineering and Materials Sciences. 2005 Jan; 12:97–103. http://nopr.niscair.res.in/bitstream/123456789/8419/1/IJEMS%2012(2)%2097-103.pdf.

Kamaruddin S, Khan ZA, Foong SH. Application of Taguchi method in the optimization of injection moulding parameters for manufacturing products from plastic blend. IACSIT International Journal of Engineering and Technology. 2010 Dec; 2:574–80. DOI: 10.7763/IJET.2010.V2.184.

Mohan NS, Ramachandra A, Kulkarni SM. Influence of process parameters on cutting force and torque during drilling of glass-fiber polyester reinforced composites. Composite Structures. 2005 Dec; 71:407–13. DOI: 10.1016/j.compstruct.2005.09.039.

Ariffin M, Ali Sapuan SM, Ismail N. An optimise drilling process for an aircraft composite structure using design of experiments. Scientific Research and Essays. 2009 Oct;4:1109–16. http://www.academicjournals.org/journal/SRE/article-abstract/E509DE018608.

Shim HJ, Kim JK. Cause of failure and optimization of V-belt pulley considering fatigue life uncertainty in automotive applications. Engineering Failure Analysis. 2009 Sep; 16:1955–63. DOI: 10.1016/j.engfailanal.2008.10.008.

Mahfouz AS, Hassan A, Arisha A. Practical simulation application: evaluation of process control parameters in Twisted-Pair Cables manufacturing system. Simulation Modelling Practice and Theory. 2010 May; 18:471–82. http://202.114.89.42/resource/pdf/4983.pdf.

Petit CTG, Lan R, Cowin PI, Tao S. Structure and conductivity of strontium-doped cerium orthovanadates Ce1-xSrxVO4. Journal of Solid State Chemistry. 2010 Jun; 183:1231‒38. DOI: 10.1016/j.jssc.2010.03.032.

Rao R, Garg AB, Sakuntala T, Archary SN, Tyagi AK. High pressure Raman scattering study on the phase stability of LuVO4. Journal of Solid State Chemistry. 2009 July; 182:1879‒83. DOI: 10.1016/j.jssc.2009.05.003.

Rao IS, Palanna OG. Electrical, thermal and infrared studies of cerium(Ill) orthovanadate. Bulletin of Materials Science. 1995 Sep; 18:593‒97. DOI: 10.1007/BF02744845.

Varma S, Wani BN, Gupta NM. Synthesis, characterization, and redox behavior of mixed orthovanadates La1−xCexVO4. Materials Research Bulletin 2002 Oct; 37:2117‒27. DOI: 10.1016/S0025-5408(02)00888-7.

Çelik G, Kurtuluş F. Microwave-assisted synthesis of CeVO4 in the mild conditions, characterization and investigation of luminescent properties. Acta Physica Polonica A. 2014 Jan; 125:2-4. DOI:10.12693/APhysPolA.125.357.

Kaya MO, Kaya Y, Çelik G, Kurtuluş F, Arslan O, Güler ÖÖ. Differential in vitro inhibition studies of some cerium vanadate derivatives on xanthine oxidase. Journal of Enzyme Inhibition and Medicinal Chemistry 2015 Apr; 30:286-89. DOI: 10.3109/14756366.2014.920837.

Watanabe A. Highly conductive oxides, CeVO4, Ce1−xMxVO4−0.5x(M=Ca, Sr, Pb) and Ce1−yBiyVO4, with zircon-type structure prepared by solid-state reaction in air. Journal of Solid State Chemistry. 2000 Aug; 153:174‒79. DOI: 10.1006/jssc.2000.8773.

Hirata T, Watanabe A. Comparison between the Raman Spectra of Ce1−xCaxVO4−0.5x (0≤x≤0.41) and Ce1−xBixVO4 (0≤x≤0.68). Journal of Solid State Chemistry. 2001 May; 158:264‒67. DOI: 10.1006/jssc.2000.8773A.

Tsipis EV, Kharton VV, Frade JR. Mixed conducting components of solid oxide fuel cell anodes. Journal of European Ceramic Society. 2005 Apr; 25:2623‒26. DOI: 10.1016/j.jeurceramsoc.2005.03.114.

Tsipis EV, Kharton VV, Vyshatko NP, Shaula AL, Frade JR. Stability and oxygen ionic conductivity of zircon-type Ce1−xAxVO4+δ (A=Ca, Sr). Journal of Solid State Chemistry. 2003 Nov; 176:47‒56. DOI: 10.1016/S0022-4596(03)00342-6.

Tsipis EV, Patrakeev MV, Kharton VV, Vyshatko NP, Frade JR. Ionic and p-type electronic transport in zircon-type Ce1 − xAxVO4 ± δ (A = Ca, Sr). Journal Materials Chemistry. 2002 Oct; 12:3738‒45. DOI: 10.1039/B206004C.

Mahapatra S, Vinu R, Saha D, Row, TNG, Madras G. Synthesis, characterization and photocatalytic activity of MxCe1−xVO4 (M = Li, Ca and Fe). Applied Catalysis A. 2009 Jun; 361:32‒41. DOI: 10.1016/j.apcata.2009.03.028.

Varma S, Wani BN, Gupta NM. Redox behavior and catalytic activity of La–Fe–V–O mixed oxides. Applied Catalysis A. 2003 Feb; 241:341‒48. DOI: 10.1016/S0926-860X(02)00492-1.

Varma S, Wani BN, Sathyamoorthy A, Gupta NM. On the role of lattice distortion in the catalytic properties of substituted orthovanadates La1−xFexVO4. Journal of Physics and Chemistry of Solids. 2004 July; 65:1291‒96. DOI: 10.1016/j.jpcs.2004.02.009.

Pidol L, Noël OG, Harari AK, Viana B, Plenc D, Gourier D. EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5. Journal of Physics and Chemistry of Solids. 2006 Apr; 67:643‒50. DOI: 10.1016/j.jpcs.2005.10.175.

Petkova P. Anisotropic magneto-optical properties of vanadium in Bi4Ge3O12. Journal of Magnetism and Magnetic Materials. 2016 July; 410:5-9. DOI: 10.1016/j.jmmm.2016.03.004.

Petkova P, Vasilev P, Mustafa M, Parushev I. Vanadium States in Doped Bi12SiO20. Materials Science. 2015 Feb; 21:167-72. DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6140.

He M, Wang WY, Sun YP, Xu YP, Chen XL. Growth and optical properties of YBa3B9O18:Ce crystals. Journal of Crystal Growth 2007 Sep; 307:427‒31. DOI: 10.1016/j.jcrysgro.2007.06.022.

Xiao D, Wang S, Hou Y, Wang E, Li Y, An H, Xu L, Hu C. Hydrothermal synthesis and crystal structure of a new layered titanium vanadate decorated with organonitrogen ligand: [Ti(2,2′-bpy)V2O7]. Journal of Molecular Structure. 2004 Apr; 692:107‒14. DOI: 10.1016/j.molstruc.2004.01.014.

Asl MS, Golmohammadi F, Kakroudi MG, Shokouhimehr M. Synergetic effects of SiC and Csf in ZrB2-based ceramic composites. Part I:Densification behavior. Ceramics International. 2016 Feb; 42:4498–4506. DOI: 10.1016/j.ceramint.2015.11.139.




J. Turk. Chem. Soc., Sect. A: Chem.