Docking and Molecular Dynamics Calculations of Some Previously Studied and newly Designed Ligands to Catalytic Core Domain of HIV-1 Integrase and an Investigation to Effects of Conformational Changes of Protein on Docking Results

Selami Ercan
2.634 220


Nowadays, AIDS still remains as a worldwide pandemic and continues to cause many death which arise from HIV-1 virus. For nearly 35 years, drugs that target various steps of virus life cycle have been developed. HIV-1 integrase is the one of these steps which is essential for virus life cycle. Computer aided drug design is being used in many drug design studies as also used in development of the first HIV-1 integrase inhibitor Raltegravir. In this study 3 ligands which are used as HIV-1 integrase inhibitors and 4 newly designed ligands were docked to catalytic core domain of HIV-1 integrase. Each of ligands docked to three different conformations of protein. Prepared complexes (21 item) were carried out by 50 ns MD simulations and results were analyzed. Finally, the binding free energies of ligands were calculated. Hereunder, it was determined that designed ligands L01 and L03 gave favorable results. The questions about the ligands which have low docking scores in a conformation of protein could give better scores in another conformation of protein and if the MD simulations carry the different oriented and different localized ligands in same position at the end of simulation were answered.


HIV-1 integrase; drug design; docking; molecular dynamics; binding free energy

Full Text:



Global Aids Response Progress Reporting 2015. 2015.

Miri L, Bouvier G, Kettani A, Mikou A, Wakrim L, Nilges M, et al. Stabilization of the integrase-DNA complex by Mg2+ ions and prediction of key residues for binding HIV-1 integrase inhibitors. Proteins. 2014;82(3):466-78.

Pendri A, Meanwell NA, Peese KM, Walker MA. New first and second generation inhibitors of human immunodeficiency virus-1 integrase. Expert Opin Ther Patents. 2011;21(8):1173-89.

Zhang D, Debnath B, Yu S, Sanchez TW, Christ F, Liu Y, et al. Design and discovery of 5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxamide inhibitors of HIV-1 integrase. Bioorganic & medicinal chemistry. 2014;22(19):5446-53.

Mehellou Y, De Clercq E. Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J Med Chem. 2010;53(2):521-38.

De Luca L, De Grazia S, Ferro S, Gitto R, Christ F, Debyser Z, et al. HIV-1 integrase strand-transfer inhibitors: design, synthesis and molecular modeling investigation. Eur J Med Chem. 2011;46(2):756-64.

DeGruttola V, Dix L, D'Aquila R, Holder D, Phillips A, Ait-Khaled M, et al. The relation between baseline HIV drug resistance and response to antiretroviral therapy: re-analysis of retrospective and prospective studies using a standardized data analysis plan. Antiviral therapy. 2000;5(1):41-8.

Goethals O, Van Ginderen M, Vos A, Cummings MD, Van Der Borght K, Van Wesenbeeck L, et al. Resistance to raltegravir highlights integrase mutations at codon 148 in conferring cross-resistance to a second-generation HIV-1 integrase inhibitor. Antiviral Res. 2011;91(2):167-76.

Richman DD. Antiviral drug resistance. Antiviral Res. 2006;71(2-3):117-21.

Calmy A, Hirschel B, Cooper DA, Carr A. A new era of antiretroviral drug toxicity. Antiviral therapy. 2009;14(2):165-79.

Clavel F, Hance AJ. HIV drug resistance. N Engl J Med. 2004;350(10):1023-35.

Emini EA, Graham DJ, Gotlib L, Condra JH, Byrnes VW, Schleif WA. HIV and multidrug resistance. Nature. 1993;364(6439):679.

Geeraert L, Kraus G, Pomerantz RJ. Hide-and-seek: the challenge of viral persistence in HIV-1 infection. Annu Rev Med. 2008;59:487-501.

Johnson VA, Brun-Vezinet F, Clotet B, Gunthard HF, Kuritzkes DR, Pillay D, et al. Update of the drug resistance mutations in HIV-1: December 2010. Top HIV Med. 2010;18(5):156-63.

Malta M, Magnanini MM, Strathdee SA, Bastos FI. Adherence to antiretroviral therapy among HIV-infected drug users: a meta-analysis. AIDS Behav. 2010;14(4):731-47.

Marcello A. Latency: the hidden HIV-1 challenge. Retrovirology. 2006;3:7.

Moyle G, Gatell J, Perno CF, Ratanasuwan W, Schechter M, Tsoukas C. Potential for new antiretrovirals to address unmet needs in the management of HIV-1 infection. AIDS Patient Care STDS. 2008;22(6):459-71.

Paredes R, Clotet B. Clinical management of HIV-1 resistance. Antiviral Res. 2010;85(1):245-65.

Sharma H, Sanchez TW, Neamati N, Detorio M, Schinazi RF, Cheng X, et al. Synthesis, docking, and biological studies of phenanthrene beta-diketo acids as novel HIV-1 integrase inhibitors. Bioorg Med Chem Lett. 2013;23(22):6146-51.

Ercan S, Pirinccioglu N. Computational design of a full-length model of HIV-1 integrase: modeling of new inhibitors and comparison of their calculated binding energies with those previously studied. J Mol Model. 2013;19(10):4349-68.

Desimmie BA, Demeulemeester J, Suchaud V, Taltynov O, Billamboz M, Lion C, et al. 2-Hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs), novel inhibitors of HIV integrase with a high barrier to resistance. ACS Chem Biol. 2013;8(6):1187-94.

Summa V, Petrocchi A, Bonelli F, Crescenzi B, Donghi M, Ferrara M, et al. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem. 2008;51(18):5843-55.

Sax PE, DeJesus E, Mills A, Zolopa A, Cohen C, Wohl D, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. Lancet. 2012;379(9835):2439-48.

Dow DE, Bartlett JA. Dolutegravir, the Second-Generation of Integrase Strand Transfer Inhibitors (INSTIs) for the Treatment of HIV. Infect Dis Ther. 2014;3(2):83-102.

Delelis O, Carayon K, Saib A, Deprez E, Mouscadet JF. Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology. 2008;5:114.

Wang JY, Ling H, Yang W, Craigie R. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. EMBO J. 2001;20(24):7333-43.

Chen JC, Krucinski J, Miercke LJ, Finer-Moore JS, Tang AH, Leavitt AD, et al. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc Natl Acad Sci U S A. 2000;97(15):8233-8.

Maignan S, Guilloteau JP, Zhou-Liu Q, Clement-Mella C, Mikol V. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. Journal of molecular biology. 1998;282(2):359-68.

Bujacz G, Alexandratos J, Qing ZL, Clement-Mella C, Wlodawer A. The catalytic domain of human immunodeficiency virus integrase: ordered active site in the F185H mutant. FEBS letters. 1996;398(2-3):175-8.

Goldgur Y, Craigie R, Cohen GH, Fujiwara T, Yoshinaga T, Fujishita T, et al. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Proc Natl Acad Sci U S A. 1999;96(23):13040-3.

Wang Y, Rong J, Zhang B, Hu L, Wang X, Zeng C. Design and synthesis of N-methylpyrimidone derivatives as HIV-1 integrase inhibitors. Bioorganic & medicinal chemistry. 2015;23(4):735-41.

Costi R, Metifiot M, Chung S, Cuzzucoli Crucitti G, Maddali K, Pescatori L, et al. Basic quinolinonyl diketo acid derivatives as inhibitors of HIV integrase and their activity against RNase H function of reverse transcriptase. J Med Chem. 2014;57(8):3223-34.

Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature. 2010;464(7286):232-6.

Chen Q, Cheng X, Wei D, Xu Q. Molecular dynamics simulation studies of the wild type and E92Q/N155H mutant of Elvitegravir-resistance HIV-1 integrase. Interdiscip Sci. 2015;7(1):36-42.

Brigo A, Lee KW, Iurcu Mustata G, Briggs JM. Comparison of multiple molecular dynamics trajectories calculated for the drug-resistant HIV-1 integrase T66I/M154I catalytic domain. Biophys J. 2005;88(5):3072-82.

Brigo A, Lee KW, Fogolari F, Mustata GI, Briggs JM. Comparative molecular dynamics simulations of HIV-1 integrase and the T66I/M154I mutant: binding modes and drug resistance to a diketo acid inhibitor. Proteins. 2005;59(4):723-41.

Miller BR, 3rd, McGee TD, Jr., Swails JM, Homeyer N, Gohlke H, Roitberg AE. An Efficient Program for End-State Free Energy Calculations. J Chem Theory Comput. 2012;8(9):3314-21.

Sechi M, Carcelli M, Rogolino D, Neamati N. Role of Metals in HIV-1 Integrase Inhibitor Design. HIV-1 Integrase: John Wiley & Sons, Inc.; 2011. p. 287-307.

Metifiot M, Maddali K, Johnson BC, Hare S, Smith SJ, Zhao XZ, et al. Activities, crystal structures, and molecular dynamics of dihydro-1H-isoindole derivatives, inhibitors of HIV-1 integrase. ACS Chem Biol. 2013;8(1):209-17.

DA Case TD, TE Cheatham III, CL Simmerling, J Wang, RE Duke, R Luo, RC Walker, W Zhang, KM Merz, B Roberts, S Hayik, A Roitberg, G Seabra, J Swails, AW Goetz, I Kolossváry, KF Wong, F Paesani, J Vanicek, RM Wolf, J Liu, X Wu, SR Brozell, T Steinbrecher, H Gohlke, Q Cai, X Ye, J Wang, MJ Hsieh, G Cui, DR Roe, DH Mathews, MG Seetin, R Salomon-Ferrer, C Sagui, V Babin, T Luchko, S Gusarov, A Kovalenko, PA Kollman. University of California; 2012.

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics. 1983;79(2):926-35.

Frisch MJT, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01 ed: Gaussian, Inc., Wallingford CT,; 2009.

Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of chemical physics. 1993;98(12):10089-92.

Ryckaert J-P, Ciccotti G, Berendsen HJ. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics. 1977;23(3):327-41.

Feig M, Karanicolas J, Brooks CL, 3rd. MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graph Model. 2004;22(5):377-95.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-91.

Bera S, Pandey KK, Vora AC, Grandgenett DP. HIV-1 integrase strand transfer inhibitors stabilize an integrase-single blunt-ended DNA complex. Journal of molecular biology. 2011;410(5):831-46.

Sharma H, Cheng X, Buolamwini JK. Homology model-guided 3D-QSAR studies of HIV-1 integrase inhibitors. J Chem Inf Model. 2012;52(2):515-44.

Hare S, Smith SJ, Metifiot M, Jaxa-Chamiec A, Pommier Y, Hughes SH, et al. Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol Pharmacol. 2011;80(4):565-72.

Xue W, Liu H, Yao X. Molecular mechanism of HIV-1 integrase-vDNA interactions and strand transfer inhibitor action: a molecular modeling perspective. J Comput Chem. 2012;33(5):527-36.

Kuhn B, Kollman PA. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem. 2000;43(20):3786-91.

Wang J, Morin P, Wang W, Kollman PA. Use of MM-PBSA in Reproducing the Binding Free Energies to HIV-1 RT of TIBO Derivatives and Predicting the Binding Mode to HIV-1 RT of Efavirenz by Docking and MM-PBSA. Journal of the American Chemical Society. 2001;123(22):5221-30.

J. Turk. Chem. Soc., Sect. A: Chem.