FABRICATION OF NANOPOROUS Ni VIA DEALLOYING OF ZINC-NICKEL COATINGS

Oturak Seda
1.114 661

Abstract


Dealloying is a selective leaching of one component in a multicomponent alloy so as to produce a nanoporous structure. In this study, it was aimed to produce nanoporous Ni coating by selective leaching of Zn in a Zn-Ni alloy. To achieve this, first the Zn-Ni alloy was obtained by electrodeposition in a bath containing Zn and Ni salts. Then, dealloying was performed at different concentrations of NaOH solution. Dealloying led to crack formation in the coatings which thus prevented the formation of porous structure. This was attributed to insufficient surface diffusion of nickel which for the leaching rate employed was to slow to form an interconnected skeleton of Ni as porous structure.

SEM image of coatings after dealloying showing crack formation a) 0.75 M NaOH, b) 2 M NaOH.

Keywords


Nanoporous Ni; Ni-Zn; Electrodeposition; Dealloying

Full Text:

PDF

References


G.Q. Lu, X.S. Zhao. Nanoporous Materials - Science and Engineering Chapter 1: Nanoporous Materials - An Over- view, 4, 2005.

International Union of Pure and Applied Chemistry, retrieved from http://goldbook.iupac.org/M03909.html on June 4th, 2013.

University of Oslo, Nanoporous Materials, retrieved fromhttp://www.uio.no/studier/emner/matnat/kjemi/KJ M5100/h06/undervisningsmateriale/16KJM5100_2006_po rous_e.pdf on June 4th, 2013.

Y. Lei, W. Chim, , Z. Zhang, T. Zhou, L. Zhang, G. Meng, F. Phillip. Chemical Physics Letters 380, 313–318, 2003.

R. Mao, S. Liang, X. Wang, Q. Yang, Q. Han. Corrosion Science 60, 231–237, 2012.

Z. Qi, C. Zhao, X. Wang, J. Lin, W. Shao, Z. Zhang, X. Bian. J. of Physical Chemistry C 113, 6694–6698, 2009.

S.M. Awadh, F. M. Al Kharafi, B.G. Ateya. Journal of the Electrochemical Society, 156 (3) C114-C121, 2009.

A.M. Alfantazi, T.M. Ahmed, D. Tromans. Materials and Design 30 2425 – 2430, 2009.

J. Erlebacher. Journal of the Electrochemical Society, 151 (10) C614 - C626, 2004.

Z. Qi, Z. Zhanga, H. Jia, Y. Qu, G. Liu, X. Bian. Journal of Alloys and Compounds 472, 71–78, 2009.

L. Sun, C. Chien, P. C. Searson. Chemistry of Materials 16, 3125-3129, 2004.

J. Chang, S. Hsu, I-W. Sun, W. Tsai. Journal of Physical Chemistry C, 112, 1371-1376, 2008.

M. Hakamada, M. Mabuchi. Journal of Alloys and Compounds 485, 583–587, 2009.

M. G. Hosseini, M. Abdolmaleki, S. Ashrafpoor. Journal of Applied Electrochemistry 42, 153–162, 2012.

J. Ca, J. Xu, J. Wanga, L. Zhang, H. Zhou, Y. Zhong, D. Chen, H. Fan, H. Shao, J. Zhang, C. Cao. International Jour- nal of Hydrogen Energy 38, 934 – 941, 2013.

A. Matsuda, A. Komoda, T. Yoshihara, K. Miyachi. “Production of Zn-Ni Alloy Plated Steel Strips” U.S. Patent 4 569 731, Feb. 11, 1986.

M. Stein, S. P. Owens, H. W. Pickering, K. G. Weil. Elec- trochimica Acta. Vol. 43, Nos. 1-2, 223-226, 1998.

J. Cai, J. Xu, J. Wanga, L. Zhang, H. Zhou, Y. Zhong, D. Chen, H. Fan, H. Shao, J. Zhang, C. Cao. International Jour- nal of Hydrogen Energy 38: 934 – 941, 2013.

H.-J. Qiu, J.L. Kang, P. Liu, A. Hirata, T. Fujita, M.W. Chen. Journal of Power Sources S0378-7753, 01420-1 (ac- cepted manuscript, 2013).

J. Erlebacher, K. Sieradzki. Scripta Materialia 49, 991– 996, 2003.

E.G. Seebauer, C.E. Allen. Progress in Surface Science, Vol. 49, No. 3, 265-330, 1995. AUTHOR INFORMATION