Bekir Çöl, Mehmet Karaali
1.405 281


Honey is a sweet food made by bees and some other insects. Pine honey is a type of honey which is produced by honey bees from the sugary secretions made by the some insect species, such as Marchalina hellenica, living on the pine trees. Pine honey is mostly produced in the Mediterranean countries such as Turkey and some regions of Greece. Honey is a highly consumed natural food product and it is associated with numerous health benefits. The knowledge of physiochemical and biological properties of honey as well as its floral origin is very important. Knowing the diversity of pollens, microorganism content of honey or ensuring its GMO (genetically modified organisms) status is significant both in terms of health and economy. To obtain such information, one of the most effective ways is to analyze the DNA of pine honey and identify the biological species it contains.  Due to the nature of pine honey such as its viscosity and the presence of inhibitors, there is not a perfect reliable convincing DNA isolation method available to date.  In this study, we collected pine honey samples from Mugla region (Turkey) and isolated DNA from the precipitated pollens of the honey using three different DNA isolation approaches. These methods include a modified CTAB method, manual silica dioxide approach and DNeasy Plant Mini Kit. DNA extraction protocols were compared in terms of DNA yield and purity. We demonstrate that the use of DNeasy plant kit has given relatively better results under the conditions of the current study for the Pine honey of Muğla.

Full Text:



Al-jabri AA, “Honey, milk and antibiotics”, African Journey of Biotechnology, 4: 1580-1587. 2005.

Barth, M. O. “Melissopalynology in Brazil: a review of pollen analysis of honeys, propolis and pollen loads of bees”, Scientia Agricola, v. 61, n. 3, p. 342-350, 2004.

Casiraghi, M., Bruni, I., De Mattia, F., Galimberti, A., Galasso, G., Banfi, E., & Labra, M., “Identification of poisonous plants by DNA barcoding approach”, International Journal of Legal Medicine, 124(6), 595–603. 2010.

Etzold E, Lichtenberg-Kraag B, “Determination of the botanical origin of honey by Fourier-Transformed İnfrared Spectroscopy: An approach for routine analysis”, Eur Food Res Technol; 227 (2): 579-586. 2007.

Fay, M. F., Bayer, C., Alverson, W. S., de Bruijin, A. Y., & Chase, M. W. “Plastid rbcL sequence data indicate a close affinity between Diegodendron and Bixa”, Taxon, 47, 43–50, 1998.

Fleischmann, A.; Heubl, G. “Overcoming DNA extraction problems from carnivorous plants”, Anales del Jardín Botánico de Madrid, v. 66, n. 2, p. 209-215, http://dx.doi.org/10.3989/ ajbm.2198, 2009.

Galimberti, A., Bruni, I., De Mattia, F., Galasso, G., Banfi, E., Casiraghi, M., & Labra, M. 2014, “A DNA barcoding approach for identify plant spicies in multiflower honey”, Food Chemistry 170: 308–315, 2015.

Jain, S.A. et. al. “Extraction of DNA from honey and its amplification by PCR for botanical identification”, Food Sci. Technol, Campinas, 33(4): 753-756, 2013.

Koca, I.; Koca, A ‘F. “Poisoning by mad honey”, Food and Chemical Toxicology, v. 45, p. 1315-1318, 2007.

Liberato, M. C. T. C. Moaris, M. S. Magalhaes, C. E. C. Magalhales, I. H. Cavalcati, D. B. Silva, M. M. O. “Physicochemical properties and mineral and protein content of honey samples from Ceará state”, Northeastern Brazil, Food Science and Technology, v. 33, n. 1, p. 38-46, 2013.

Marguitas L, Stanciu O, Dezmirean D, Bobis O, Popescu O, Bogdanov S. and Campos M. “In Vitro antioxidante capacity of honeybee-collected pollen of selected floral origin harvested from Romania”. Food Chemistry 115: 878-883, 2009.

Moyo, M. Baiuru, M. W. Amoo, S. O. Van Staden, J. “Optimising DNA isolation for medicinal plants”, South African Journal of Botany, v. 74, n. 4, p. 771-775.

Namias N 2003, “Honey in the management of infections. Surg. Infect”, 4: 219-226, 2008.

Ramirez R, Montenegro YG “Certificación del origen botánico y polen corbicular perteneciente a la comuna de Litueche”, VI Región de Chile’, Cien. Inv. Agric., 31: 197-211, 2004.

Sharma, P.; Purohit, S. D “An improved method of DNA isolation from polysaccharide rich leaves of Boswellia serrata Roxb”, Indian Journal of Biotechnology, v. 11, p. 67-71. 2012.

Stanimirova, I. Üstün, B. Caijka, C. Riddelova, K Hajslova, J. Buydens, L. M. C. Walczak, B. ‘Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques”, Food Chemistry, v. 118, n. 1, p. 171- 176, http://dx.doi.org/10.1016/j.foodchem.2009.04.079, 2010.

Subrahmanyam M “Topical application of honey for burn wound treatment-an overview”, Ann. Burns Fire Disasters. 20: 3. 2007.

Wang, J.; Li, Q. “Chemical Composition, Characterization, and Differentiation of Honey Botanical and Geographical Origins’, Advances in Food and Nutrition Research”, v. 62, p. 89-137, 2011.