AHŞAP-BETON KOMPOZİT DÖŞEMELERİN BİNALARDA VE KÖPRÜLERDE KULLANIMI ÜZERİNE BİR İNCELEME

FAHRİYE HİLAL HALICIOĞLU, BERNA YÜREKLİ
1.898 650

Abstract


Bu çalışma ahşap-beton kompozit döşemelerin binalarda ve köprülerde uygulanma olanaklarını sunmaktadır. Ahşap-beton kompozit sistem bir yapım tekniğidir. Ahşap-beton kompozit döşeme bazı bağlantı teknikleri kullanılarak ahşap kirişler ve bir beton plak ile oluşturulan bir sistemdir. Bu sistemde ahşap ve beton elemanların strüktürel performansı büyük ölçüde kompozit davranışın özelliklerine bağlıdır. Bu tür kompozit sistem çoğunlukla Amerika Birleşik Devletleri, Avustralya ve Avrupa ülkelerinde tercih edilmektedir. Ahşap-beton kompozit döşemeler mevcut ahşap binaların döşemelerinin yenilenmesinde, yeni bina yapımında ve köprü yapımında kullanılmaktadır. Türk inşaat sektöründe ise kullanılmamaktadır. Bu nedenle, bu çalışmanın amacı inşaat uygulamalarında kullanılan ahşap-beton kompozit sistemi incelemektir. Bu amaçla, bu tür kompozit sistemin strüktürel tasarım ve yapım özellikleri ilgili literatür analiz edilerek ortaya çıkarılmaktadır. Bu çalışmada binaların ve köprülerin yapımında kullanılan ahşap-beton kompozit döşemeler incelenmektedir ve uygulama örnekleri sunulmaktadır.  


Keywords


Ahşap-Beton Kompozit Sistem, Döşemeler, Ahşap, Beton, Binalar

References


Turrini, G. and Piazza, M., (1983). Static Behaviour of Timber-Concrete Composite Structures. Recuperare, 6, 214–225.

Natterer, J., Hamm, J., and Favre, P., (1996). Composite Wood-Concrete Floors for Multi-Story Buildings. Proceedings of the International Wood Engineering Conference, New Orleans, Louisiana, (USA), 3, 431-435.

Holschemacher, K., Klotz, S., and Weibe, D., (2002). Application of Steel Fibre Reinforced Concrete for Timber-Concrete Composite Constructions. LACER, 7, 161-170.

Mettern, C., (2003). Structural Timber-Concrete Composites– Advantages of a Little Known Innovation. Structural Engineer, 18 February, 17-19.

Benitez, M.F., (2000). Development and Testing of Timber/Concrete Shear Connectors. Proceedings of 6th World Conference on Timber Engineering, WCTE 2000, Whistler Resort, British Columbia, Canada, 31 July-3 August, 2000.

Rodrigues, N., Dias, A.M.P.G., and Providencia, P., (2013). Timber-Concrete Composite Bridges. BioResources, 8(4), 6630-6649.

Ticomtec, Holz-Verbund-Systeme, (2007). Erişim tarihi: 9 Mart 2015 http://www.hbv-system.de

Bathon, L.A. and Graf, M., (2000). A Continuous Wood-Concrete-Composite System. Proceedings of 6th World Conference on Timber Engineering, WCTE 2000, Whistler Resort, British Columbia, Canada, 31 July-3 August, 2000.

Bathon, L., Bletz, O., and Schmidt, J., (2006). Hurricane Proof Buildings-An Innovative Solution Using Prefabricated Modular Wood-Concrete-Composite Elements. Proceedings of 9th World Conference on Timber Engineering, Portland, OR, USA, 6-10 August, 2006.

Timber-Concrete Composite. Erişim tarihi: 9 Mart 2015 http://www.structurecraft.com/materials/mass-timber/timber-concrete-composite

Dias, A.M.P.G., (2005). Mechanical Behaviour of Timber-Concrete Joints. PhD Thesis, University of Coimbra, Portugal.

Lukaszewska, E., (2009). Development of Prefabricated Timber-Concrete Composite Floors. PhD Thesis, Lulea University of Technology, Sweden.

Yeoh, D., (2010). Behavior and Design of Timber-Concrete Composite Floor System. PhD Thesis, University of Canterbury, New Zeland.

Costa, L., (2011). Timber Concrete Composite Floors with Prefabricate Fiber Reinforced Concrete. PhD Thesis, Lund Institute of Technology, Lund University, Sweden.

Ballerini, M. and Piazza, M., (2000). Experimental and Numerical Results on Timber-Concrete Composite Floors with Different Connection Systems. Proceedings of 6th World Conference on Timber Engineering, WCTE 2000, Whistler Resort, British Columbia, Canada, 31 July-3 August, 2000.

Ballerini, M., Crocetti, R., and Piazza, M., (2002). An Experimental Investigation on Notched Connections for Timber-Concrete Composite Structures. Proceedings of 7th World Conference on Timber Engineering, WCTE 2002: Timber Construction in the New Millenium, Malaysia, August 12-15, 2002.

Gutkowski, R.M., Thompson, W., Brown, K., Etournaud, P., Shigidi, A., and Natterer, J., (1999). Laboratory Testing of Composite Wood-Concrete Beam and Deck Specimens. Proceedings of the RILEM Symposium on Timber Engineering, Stockholm, Sweden, 13-15 September, 1999.

Gutkowski, R., Brown, K., Shigidi, A., and Natterer, J. (2008) Laboratory Tests of Composite Wood-Concrete Beams. Journal of Construction and Building Materials, 22(6), 1059-1066.

Rijal, R., Samali, B., Shrestha, R., and Crews, K., (2015). Experimental and Analytical Study on Dynamic Performance of Timber-Concrete Composite Beams. Construction and Building Materials, 75, 46–53.

Ceccotti A., (2002). Composite Concrete-Timber Structures. Progress in Structural Engineering and Materials, 4(3), 264-275.

Ceccotti A., Fragiacomo, M., and Giordano, S., (2006). Long-Term and Collapse Tests on a Timber-Concrete Composite Beam with Glued-in Connection. Materials and Structures, 40(1), 15-25.

Khorsandnia, N., Valipour, H., Schänzlin, J., and Crews, K., (2016). Experimental Investigations of Deconstructable Timber–Concrete Composite Beams. Journal of Structural Engineering, ASCE (American Society of Civil Engineers), July, 04016130-1-13.

Ahmadi, B.H. and Saka, M.P., (1993). Behavior of Composite Concrete Timber Floors. Journal of Structural Engineers, 119, 3111-3130.

Godycki, T., Pawlica, J., and Kleszczewski, J., (1984). Concrete Decks with Wooden Joists/Verbunddecke aus Holzrippen und Betonplatte. Bauingenieur, 59(12), 477-483.

Stevanovic, B., (1989). Analysis, Calculation and Practical Use of Composite Action of Timber Beams and Reinforced Concete Plate Connected by Nails. Proceedings of the second Pasific Timber Engineering Conference (PTEC), University of Auckland, New Zealand, 28-31 August.

Kenel, A. and Meierhofer, U., (1998). Long-Term Performance of Timber-Concrete Composite Structural Elements. EMPA, Dübendorf, Switzerland.

Lukaszewska, E., Johnsson, H., and Fragiacomo, M., (2008). Performance of Connections for Prefabricated Timber-Concrete Composite Floors. Materials and Structures, 41(9), 1533-1550.

Frangi, A. and Fontana, M., (2001). A Design Model for the Fire Resistance of Timber-Concrete Composite Slabs. Proceedings of the IABSE Conference on Innovative Wooden Structures and Bridges, Lahti, Finland, 29-31 August.

Eurocode 5, (2004). EN 1995-1-1: Design of Timber Structures- Part 1: General-Common Rules and Rules for Buildings. CEN. Erişim tarihi: 9 Mart 2015 https://law.resource.org/pub/eu/eurocode/en.1995.2.2004.pdf, https://law.resource.org/pub/eu/eurocode/en.1995.1.1.2004.pdf, http://www.europeanwood.org.cn/en/eurocode-5, https://standards.cen.eu/

Eurocode 5, (2004). EN 1995-2: Design of Timber Structures- Part 2: Bridges. CEN. Erişim tarihi: 9 Mart 2015 https://law.resource.org/pub/eu/eurocode/en.1995.2.2004.pdf, https://law.resource.org/pub/eu/eurocode/en.1995.1.1.2004.pdf, http://www.europeanwood.org.cn/en/eurocode-5, https://standards.cen.eu/

Manaridis, A., (2010). Evaluation of Timber-Concrete Composite Floors. Rapport TVBK–5187, Lund University, Sweden.

İlkokul Binası. Erişim tarihi: 4 Temmuz 2015, https://www.linkedin.com/pulse/20140624202956-12564157-composite-timber-floors-for-primary-school

Winschoten Köprüsü. Erişim tarihi: 10 Ağustos 2015, http://www.schaffitzel-miebach.com/en/projects/timber-bridges/timber-concrete-composite-bridge/timber-concrete-composite-bridge-winschoten-nl.html

Vihantasalmi Köprüsü. Erişim tarihi: 7 Ağustos 2015, http://www.puuwoodholzbois.com/projects/vihantasalmi-bridge.