Test Bench Development for Femur Stability Assessment

Samuel SANCHEZ-CABALLERO, Barbara LLINARES, Rafael PLA FERRANDO, Miguel A. SELLES
1.166 654

Öz


This paper shows the design and development of a test bench for human
femurs. The main uses of this test bench will run from artificial femurs comparison
with real femurs, to join stability assessment after bone a fracture repair. Among
this uses is specially designed for condylar fractures testing. The test bench is
developed from a self-made existing tensile/compression testing machine. The
design procedure is supported by a literature review about the bone mechanical
behavior and composition generally and the knee joint performance and repair
particularly. On the basis of this review, the machine was designed to simulate the
adduction and abduction movements of the joint. The magnitudes to be measured
are: the compression force, the bone displacement (vertical) and the knee joint
rotation.

Anahtar kelimeler


Test benchFemur fractureCondylar fracture

Tam metin:

PDF


Referanslar


References References

Alho A, Husby T, Hoiseth A. Bone mineral content and mechanical strength. An ex-vivo study on human mechanical strength. An ex-vivo study on human mechanical strength. An ex-vivo study on human femora at autopsy. Clin Orthop Rel Res femora at autopsy. Clin Orthop Rel Res femora at autopsy. Clin Orthop Rel Res 1988;227:292–297. 1988;227:292–297. 1988;227:292–297.

Engineering, 129 (4), pp. 487-493.

Engineering, 129 (4), pp. 487-493.

Colton, C., Gebhard, F., Kregor, P., and Oliver, C., 2011. AO Surgery Reference: Distal Femur. AO Foundation, accessed 20 January 2011,www.aofoundation.org.

Cristofolini, L., Viceconti, M., Cappello, A., Toni, A., 1996. Mechanical validation of whole bone composite femur models. Journal of Biomechanics, 29 (4), pp. 525-535.

Heiner, A.D., Brown, T.D., 2001. Structural properties of a new design of composite replicate femurs and tibias. Journal of Biomechanics, 34 (6), pp. 773-781.

Jonnavithula, S., Warren, M.P., Fox, R.P., Lazaro, MI., 1993. Bone density is compromised in amenorrheic women despite return of menses: a 2-year study. Obstet Gynecol. 81(5 ( Pt 1)):669-74.

Kolmert, L., Wulff, K., 1982. Epidemiology and treatment of distal femoral. Acta Orthop Scand. 1982 Dec;53(6):957-62.

McKellop, H., Ebramzadeh, E., Niederer, P.G., Sarmiento, A., 1991. Comparison of the stability of press-fit hip prosthesis femoral stems using a synthetic model femur. J. Orthop. Res. 9, 297–305.

O'Connor, L.M., Davidson, J.A., Davies, B.M., Matthews, M.G. and Smirthwaite, P, 2008. Comparative endurance testing of the Biomet Matthews Nail and the Dynamic Compression Screw, in simulated condylar and supracondylar femoral fractures.

Pacific Research Laboratories, 2007. 4th generation composite bones have improved fracture and fatigue properties. Informational handout.

Prygoski, M.P., Sanchez-Caballero, S., Schmid, S.R., Lozier, A.J. and Selles, M.A. High Speed Fracture Fixation: Assessing Resulting Fixation Stability and Fastener Withdrawal Strength, 2013. Journal of Biomechanical Engineering, 135 (9), art. no. 091008

Martín Águila, A., Ruiz Caballero, D.J., Brito Ojeda, D.E. and Jiménez Díaz, D.J., 2010. Prótesis de rodilla. Biomecánica.

traumatología y cirugía ortopédica Jornadas canarias

de Sardinha, V.M., Lima, L.L., Belangero, W.D., Zavaglia, C.A, Bavaresco, V.P., Gomes, J.R., 2013. Tribological characterization of polyvinyl alcohol hydrogel as substitute of articular cartilage, Wear, Volume 301, Issues 1–2, April–May 2013, Pages 218-225, ISSN 0043-1648,

http://dx.doi.org/10.1016/j.wear.2012.11.054.

Stankewitz CJ, Chapman J, Muthusamy R, et al. Relationship of mechanical factors to the strength of proximal femur fractures fixed with cancellous screws. J Orthop Trauma 1996;10:248–257

Viano, D. C., and Stalnaker, R. L., 1980. Mechanisms of Femoral Fracture. J. Biomech., 13, pp. 701–715




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

e-ISSN: 1308-6529