### A Modified Jonckheere Test Statistic for Ordered Alternatives in Repeated Measures Design

#### Öz

#### Anahtar kelimeler

#### Tam metin:

PDFDOI: http://dx.doi.org/10.19113/sdufbed.73024

#### Referanslar

[1] Jonckheere, A. R. 1954. A test of significance for the relation between m rankings and k ranked categories, British Journal of Statistical Psychology, 7(1954), 93-100.

[2] Page, E. B. 1963. Ordered hypotheses for multiple treatments: a significance test for linear ranks. Journal of the American Statistical Association, 58(301), 216-230.

[3] Zhang, Y., Cabilio, P. 2013. A generalized Jonckheere test against ordered alternatives for repeated measures in randomized blocks. Statistics in medicine, 32(10), 1635-1645.

[4] Agresti, A., Pendergast, J. 1986. Comparing mean ranks for repeated measures data. Communications in Statistics-Theory and Methods, 15(5), 1417-1433.

[5] Conover, W. J., Iman, R. L. 1981. Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician,35(3), 124-129.

[6] Pellegrini, A. D., Long, J. D. 2002. A longitudinal study of bullying, dominance, and victimization during the transition from primary school through secondary school. British journal of developmental psychology,20(2), 259-280.

[7] Kendall, M. G. 1955.Rank correlation methods. Second edition, revised and enlarged. Hafner Publishing Co, Newyork, 196pp.

[8] Von Storch, H. 1999. Misuses of statistical analysis in climate research. pp 11-26. Von Storch, H., Navarra, A. 1999. Analysis of climate variability: applications of statistical techniques. Springer Science & Business Media, 337p.

[9] Hamed, K. H., Rao, A. R. 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1), 182-196.

[10] Skillings, J. H., Wolfe, D. A. 1978. Distribution-free tests for ordered alternatives in a randomized block design. Journal of the American Statistical Association, 73(362), 427-431.

[11] Kunsch, H. R. 1989. The jackknife and the bootstrap for general stationary observations. The Annals of Statistics, 1217-1241.

[12] Politis, D. N., Romano, J. P. 1992. A circular block-resampling procedure for stationary data.pp. 263-270. Lepage, R., Billard, L. 1992. Exploring the limits of bootstrap (Vol. 270). John Wiley & Sons, New York, 437p.

[13] Dehling, H., Wendler, M. 2010. Central limit theorem and the bootstrap for U-statistics of strongly mixing data. Journal of Multivariate Analysis,101(1), 126-137

[14] Önöz, B., & Bayazit, M. 2012. Block bootstrap for Mann–Kendall trend test of serially dependent data. Hydrological Processes, 26(23), 3552-3560.

This work is licensed under a Creative Commons Attribution 4.0 License.

e-ISSN: 1308-6529