Ağır Metallerin Pinus brutia Ten. İğne Yapraklarında, Glutatyon S-Transferaz Enzimleri Üzerindeki Tekil ve Bazı Bütünleşik İnhibisyonları

Can YILMAZ
567 155

Öz


Bu çalışmada 6 farklı ağır metal iyonunun toplam glutatyon S-transferaz enzim aktivitesi üzerine tekli ve ikili inhibitör mekanizmaları Türkiye’ye özgü bir çam türü olan Pinus brutia Ten. (kızılçam) iğne yapraklarından elde edilen homojenatlarda incelenmiştir. Bu amaçla Cu+2, Ni+2, Pb+2, Zn+2, Cd+2 ve Hg+2 ağır metal iyonlarının tekli inhibisyon etkisi kullanılan substratın, 1-kloro-2,4-dinitrobenzen (CDNB), farklı konsantrasyonları için ölçülmüştür. CDNB’nin üç farklı konsantrasyonu için (0,50 mM, 0,75 mM, 1,0 mM) dört farklı ağır metal ikilisinin (Ni+2-Cd+2, Ni+2-Zn+2, Pb+2-Cu+2, Pb+2-Hg+2) yine 3 farklı karışım kombinasyonunun (2A+B, A+B, A+2B) etkileri de ölçülmüştür. Cu+2, Ni+2, Pb+2, Zn+2, Cd+2 ve Hg+2 ağır metal iyonları için sırasıyla yarışmalı-tersinmez (Ki: 0,1794 mM), kısmi yarışmalı (Ki : 50,5 mM), tam karışık (Ki : 1140,6 mM), kısmi yarışmalı (Ki : 23,9 mM), kısmi karışık (Ki : 205,2 mM) ve tam yarışmalı (Ki : 27,2 mM) modeller belirlenmiştir. Ni+2-Cd+2, Ni+2-Zn+2, Pb+2-Cu+2, Pb+2-Hg+2 ağır metal çiftleri için ise {2A+B/A+B/A+2B} sırasıyla {kısmi bağımlı (Ki : 69,9 mM) / kısmi bağımlı (Ki : 58,7 mM) / tam yarışmasız (Ki : 530,3 mM)}, {kısmi karışık (Ki : 34,5 mM) / kısmi karışık (Ki : 23,2 mM) / kısmi karışık (Ki : 72,3 mM)}, {kısmi yarışmasız (Ki : 123,9 mM) / tam bağımlı (Ki : 360,1 mM) / tersinmez (Ki : 32,1 mM)}, {tam bağımlı (Ki : 316,1 mM) / tam yarışmalı (Ki : 117,6 mM) / tersinmez (Ki : 8,6 mM)} sonuçları bulunmuştur. Literatürde ilk defa yayınlanan ikili etki sonuçları iyonların konsantrasyonları arasındaki ilişkinin ortaklaşa yarattıkları inhibisyon modelinde belirleyici olduğunu göstermektedir.

Anahtar kelimeler


Pinus brutia Ten.; Glutatyon S-transferaz; Ağır metal; İnhibisyon mekanizması

Tam metin:

PDF


DOI: http://dx.doi.org/10.19113/sdufbed.27859

Referanslar


[1] Andreas Schützendübel, et al., Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization, J. Exp. Bot., (2002), Vol.53, No.372 Antioxidants and Reactive Oxygen Species in Plants Special Issue, (1351-1365).

[2] I. Brunner, J. Luster, M.S. Günthardt-Goerg, B. Frey, Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil, Environ. Pollut. (2008), 152, 559-568.

[3] S.K. Yadav, Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants, S. Afr. J. Bot. 76 (2010) 167–179.

[4] Z. Özdemir, Pinus brutia as a biogeochemical medium to detect iron and zinc in soil analysis, chromite deposits of the area Mersin, Turkey, Chemie der Erde. 65 (2005) 79–88.

[5] G. Baycu, D. Tolunay, H. Özden, S. Günebakan, Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul, Environ. Pollut. 143 (2006) 545-554.

[6] Y.W. Kuang, G.Y. Zhou, D.Z. Wen and S.Z. Liu, Heavy Metals in Bark of Pinus massoniana (Lamb.) as an Indicator of Atmospheric Deposition Near a Smeltery at Qujiang, China. Env Sci Pollut Res. 14 (2007) 270 – 275.

[7] L. Lyubenova, C. Götz, A. Golan-Goldhirsh and P. Schröder, Direct Effect of CD on Glutathione S-Transferase and Glutathione Reductase from Calystegia Sepium, Int. J. Phytorem. 9 (2007) 465–473.

[8] P. Aravind, M.N.V. Prasad, Cadmium–Zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology, Braz. J. Plant Physiol. 17 (2005) 3-20.

[9] A. Gundogdu, D. Ozdesa, C. Durana, V.N. Bulut, M. Soylak, H. B. Senturk, Biosorption of Pb(II) ions from aqueous solution by pine bark (Pinus brutia Ten.), Chem. Eng. J. 153 (2009) 62–69.

[10] R. Thom, I. Cummins, D.P. Dixon, R. Edwards, D.J. Cole and A.J. Lapthorn, Structure of a Tau Class Glutathione S-Transferase from Wheat Active in Herbicide Detoxification, Biochem. 41 ( 2002) 7008-7020.

[11] D.P. Dixon, B.G. Davis, R. Edwards, Plant Glutathione transferases, Genom Biol. 3 (2002) 3004.1–3004.10.

[12] K.A. Marrs, The functions and regulation of Glutathione s-transferases in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 (1996) 127–158.

[13] F. Droog, Plant Glutathione S-Transferases, a Tale of Theta and Tau, J. Plant Growth. Regul. 16 (1997) 95-107.

[14] M.M. Seppanen, T. Cardi, M. B. Hyökki, E. Pehu, Characterization and expression of cold-induced glutathione S-transferase in freezing tolerant Solanum commersonii, sensitive S. tuberosum and their interspecific somatic hybrids, Plant Science. 153 (2000) 125–133.

[15] C. Frova, Glutathione transferases in the genomics era: New insights and perspectives, Biomol Eng. 23 (2006) 149–169.

[16] D.P. Dixon, M. Skipsey, R. Edwards, Roles for glutathione transferases in plant secondary metabolism, Phytochemistry. 71 (2010) 338–350.

[17] D.P. Dixon, A. Lapthorn, R. Edwards, Functional Divergence in the Glutathione Transferase Superfamily in plants, J. Biol. Chem. 277 (2002b) 30859-30869.

[18] P. Schröder and C. Berkau, Characterization of cytosolic glutathione S-transferase in spruce needles. Part I: GST-Isozymes of healthy trees, Bot. Acta. 106 (1993) 301-306.

[19] S. Pflugmacher, P. Schroder, Glutathione S-transferases in trees: Inducibility by various organic xenobiotics, J. Soil Sci. Plant Nutr. 158 (1995) 71–73.

[20] W.H. Habig, M.J. Pabst and W.B. Jacoby, Glutathione S-transferase, the first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249 (1974) 7130–7139.

[21] Yilmaz, C. and İşcan M., Glutathione S-transferase activities and glutathione levels in needles of drought stressed Pinus Brutia Ten. trees, Turkish Journal of Biochemistry, (2014), 39 (2), 238-243.

[22] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randal, Protein measurement with the folin phenol reagent, J Biol Chem. 248 (1951) 265–275.

[23] Wattt RK, Ludden PW, Nickel-binding proteins, Cell Mol Life Sci. (1999), Nov 15; 56 (7-8): 604-25.

[24] Goering PL, Lead-protein interactions as a basis for lead toxicity, Neurotoxicology, (1993), 14(2-3): 45-60.

[25] Letelier ME, Martínez M, González-Lira V, Faúndez M, Aracena-Parks P, Inhibition of cytosolic glutathione S-transferase activity from rat liver by copper, Chem Biol Interact. (2006) 1;164(1-2):39-48.

[26] Aaron J. Oakley, Thasaneeya Harnnoi, Rungrutai Udomsinprasert, Kanya Jirajaroenrat, Albert J. Ketterman, and Matthew C.J. Wilce, The crystal structures of glutathione S-transferases isozymes 1–3 and 1–4 from Anopheles dirus species B, Protein Sci. (2001) Nov; 10(11): 2176–2185.

[27] Daniel W Nebert, Vasilis Vasiliou, Analysis of the glutathione S-transferase (GST) gene family, Human Genomics, (2004), 1:460.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

   ISSN: 1300-7688
e-ISSN: 1308-6529