Investigation of Exact Solutions of Perturbed Nonlinear Schrödinger's Equation by $\exp\left(-\Phi\left(\xi\right)\right)$-Expansion Method

Mehmet EKİCİ
581 169

Öz


This paper presents an analytic study on optical solitons of a perturbed nonlinear Schr\"{o}dinger's equation (NLSE). An integration tool that is the $\exp\left(-\Phi\left(\xi\right\right)$-expansion approach is used to find exact solutions. As a consequence, hyperbolic, trigonometric and rational function solutions are extracted by this approach.


Anahtar kelimeler


Solitons; Perturbed nonlinear Schrödinger's equation; The $\exp\left[-\Phi\left(\xi\right)\right]$-expansion approach

Tam metin:

PDF


DOI: http://dx.doi.org/10.19113/sdufbed.70927

Referanslar


[1] Zhou, Q., Liu, L., Liu, Y., Yu, H., Yao, P., Wei, C., Zhang, H., 2015. Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion. Nonlinear Dynamics 80(3), 1365-1371.

[2] Zhou, Q., Mirzazadeh, M., Ekici, M., Sonmezoglu, A., 2016. Analytical study of solitons in non-Kerr nonlinear negative-index materials. Nonlinear Dynamics 86, 623-638.

[3] Biswas, A., Khan, K.R., Mahmood, M.F., 2014. Bright and dark solitons in optical metamaterials. Optik 125(3), 3299-3302.

[4] Xu, Y., Savescu, M., Khan, K.R., Mahmood, M.F., Biswas, A., Belic, M., 2016. Soliton propagation through nanoscale waveguides in optical metamaterials. Optics and Laser Technology 77, 177-186.

[5] Saha, M., Sarma, A.K., 2013. Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects. Optics Communications 291, 321-325.

[6] Yang, R., Zhang, Y., 2011. Exact combined solitary wave solutions in nonlinear metamaterials. Journal of the Optical Society of America B 28(1), 123-127.

[7] Yomba, E., 2005. Construction of new solutions to the fully nonlinear generalized Camassa-Holm equations by an indirect F-function method. Journal of Mathematical Physics 46, 123504-123512.

[8] He, J.H., Wu, X.H., 2006. Exp-function method for nonlinear wave equations. Chaos, Solitons and Fractals 30, 700-708.

[9] Hirota, R., 1973. Exact N-soliton of the wave equation of long waves in shallow water and in nonlinear lattices. Journal of Mathematical Physics 14, 810-814.

[10] He, J.H., 2005. Homotopy perturbation method for bifurcation of nonlinear problems. International Journal of Nonlinear Sciences and Numerical Simulation 6, 207-208.

[11] Abdou, M.A., Soliman, A.A., 2005. New applications of variational iteration method. Physica D 211, 1-8.

[12] He, J.H., 2004. Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos, Solitons and Fractals 19, 847-851.

[13] Abassy, T.A., El-Tawil, M.A., Saleh, H.K., 2004. The solution of KdV and mKdV equations using Adomian Pade approximation. International Journal of Nonlinear Sciences and Numerical Simulation 5, 327-340.

[14] Antonova, M., Biswas, A., 2009. Adiabatic parameter dynamics of perturbed solitary waves. Communications in Nonlinear Science and Numerical Simulation 14, 734-748.

[15] Wang, M.L., 1995. Solitary wave solutions for variant Boussinesq equations. Physics Letters A 199, 169-172.

[16] Ablowitz, M.J., Clarkson, P.A., 1991. Solitons: Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge.

[17] Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q., 2001. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Physics Letters A 289, 69-74.

[18] Tascan, F., Bekir, A., 2009. Analytic solutions of the (2+1)-dimensional nonlinear evolution equations using the sine-cosine method. Applied Mathematics and Computation 215, 3134-3139.

[19] Ozis, T., Aslan, I., 2009. Symbolic computation and exact and explicit solutions of some nonlinear evolution equation in mathematical physics. Communications in Theoretical Physics 51, 577-580.

[20] Manafian, J., Lakestani, M., Bekir, A., 2016. Study of the analytical treatment of the (2+1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach. International Journal of Applied and Computational Mathematics 2(2), 243-268.

[21] Khan, K., Akbar, M.A., 2013. Application of exp(F(x))-expansion method to find the exact solutions of modified Benjamin-Bona-Mahony equation. World Applied Sciences Journal 24(10), 1373-1377.

[22] Roshid, H.O., Kabir, M.R., Bhowmik, R.C., Datta, B.K., 2014. Investigation of solitary wave solutions for Vakhnenko-Parkes equation via exp-function and exp(F(x ))-expansion method. SpringerPlus 3:692.

[23] Kaplan, M., Bekir, A., 2016. A novel analytical method for time-fractional differential equations. Optik 127, 8209-8214.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

   ISSN: 1300-7688
e-ISSN: 1308-6529