Carbon Nanotube Modified Screen Printed Electrodes: Pyranose Oxidase Immobilization Platform for Amperometric Enzyme Sensors

Dilek ODACI DEMIRKOL, Caglar OZDEMIR, Roberto PILLOTON, Suna TIMUR
1.581 336

Öz


Here, a novel enzymatic biosensor was developed using multiwalled carbon nanotube including screen printed electrodes (MWCNT-SPE). Pyranose oxidase (PyOx) was immobilized on the electrode surface by way of gelatin membrane and then cross-linked using glutaraldehyde. Glucose was detected at -0.7 V (vs. Ag/AgCl) by watching consumed oxygen in enzymatic reaction after addition substrate. After optimization of pH and enzyme loading, the linearity was found in the range of 0.1–1.0 mM of glucose. After that, the effect of MCNT on the current was tested. Also the enzymatic biosensor including glucose oxidase instead of pyranose oxidase was prepared and the biosensor response followed for glucose. Furthermore, this system was tested for glucose analysis in soft drinks.

Anahtar kelimeler


Pyranose oxidase; Multiwalled carbon nanotube; Screen printed electrode; Glucose analysis; Gelatin

Tam metin:

PDF


DOI: http://dx.doi.org/10.19113/sdufbed.06618

Referanslar


[1] Ledru, S., Ruille, N., and Boujtita, M. One-step screen-printed electrode modified in its bulk with HRP based on direct electron transfer for hydrogen peroxide detection in flow injection mode. Biosens. Bioelectron., 21 (2006), 1591-1598.

[2] Tudorache, M., and Bala, C. Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Anal. Bioanal. Chem. 388 (2007), 565–578.

[3] Albareda-Sirvent, M., Merkoci A. and Alegret, S. Configurations used in the design of screen-printed enzymatic biosensors. A review. Sens. Actuators B Chem. 69 (2000), 153–163.

[4] Vastarella, W., Della, L.S., Masci, A., Maly, J., Leo, M.D., Moretto, L.M., Pilloton, R. Biosensors based on gold nanoelectrode ensembles and screen printed electrodes. Intern. J. Environ. Anal. Chem. 87 (2007), 701-714.

[5] Vastarella, W., Rosa, V., Cremisini, C., Della, S.L., Montereali, M.R., Pilloton, R. A preliminary study on electrochemical biosensors for the determination of total cholinesterase inhibitors in strawberries. Intern. J. Environ. Anal. Chem. 87 (2007), 689-699.

[6] Montereali, M.R., Vastarella, W., Della, S.L., Pilloton, R. Tyrosinase biosensor based on modified screen printed electrodes: Measurements of total phenol content. Intern. J. Environ. Anal. Chem. 85 (2005), 795-806.

[7] Odaci, D., Timur, S., Pazarlioglu, N., Montereali, M.R., Vastarella, W., Pilloton, R., Telefoncu, A. Determination of phenolic acids using Trametes versicolor laccase. Talanta, 71 (2007), 312-317.

[8] Timur, S., Pazarlioglu, N., Pilloton, R., Telefoncu, A. Detection of phenolic compounds by thick film sensors based on Pseudomonas putida. Talanta, 1 (2003), 87-93.

[9] Zhang, L., Li, Y., Zhang, L., Li, D.W. Karpuzov, D. Long, Y.T. Electrocatalytic Oxidation of NADH on Graphene Oxide and Reduced Graphene Oxide Modified Screen-Printed Electrode. Int. J. Electrochem. Sci., 6 (2011), 819-829.

[10] Trojanowicz, M., Mulchandani, A. and Mascini, M. Carbon Nanotubes‐Modified Screen‐Printed Electrodes for Chemical Sensors and Biosensors. Anal. Lett., 37 (2004), 3185-3284.

[11] Palanisamy, S., Thirumalraj, B., Chen, S.M., Ajmal Ali, M., Al-Hemaid, F.M.A. Palladium nanoparticles decorated on activated fullerene modified screen printed carbon electrode for enhanced electrochemical sensing of dopamine. Journal of Colloid and Interface Science, 448 (2015), 251–256.

[12] Palanisamy, S., Thirumalraj B., and Chen, S.M. Electrochemical fabrication of gold nanoparticles decorated on activated fullerene C60: an enhanced sensing platform for trace level detection of toxic hydrazine in water samples. RSC Adv., 5 (2015) 94591-94598.

[13] Luo, H., Shi, Z., Li, N., Gu, Z., Zhuang, Q. nvestigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem., 73 (2001), 915-920.

[14] Zhao, Q., Gan, Z., Zhuang, Q. Electrochemical sensors based on carbon nanotubes. Electroanal. 14 (2002), 1609-1613.

[15] Britto, P.J., Santhanam, K.S.V., Ajayan, P.M. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg. 41 (1996), 121-125.

[16] Odaci, D., Telefoncu, A., Timur, S. Pyranose oxidase biosensor based on carbon nanotube (CNT)-modified carbon paste electrodes. Sensors and Actuators B: Chemical 132 (1) (2008), 159-165.

[17] Odaci, D., Telefoncu, A., Timur, S. Maltose biosensing based on co-immobilization of α-glucosidase and pyranose oxidase. Bioelectrochemistry 79 (1) (2010), 108-113.

[18] Ozdemir, C., Yeni, F., Odaci D. and Timur, S. Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem., 119 (2010), 380-385.

[19] Yuksel, M., Akin, M., Geyik, C., Odaci Demirkol, D., Ozdemir, C., Bluma, A., Höpfner, T., Beutel, S., Timur, S., Scheper T. Offline glucose biomonitoring in yeast culture by polyamidoamine/ cysteamine-modified gold electrodes. Biotechnology Progress, 27 (2) (2011), 530-538.

[20] Odaci, D., Kahveci, M.U., Sahkulubey, E.L., Ozdemir, C., Uyar, T., Timur, S., Yagci, Y. In situ synthesis of biomolecule encapsulated gold-cross-linked poly(ethylene glycol) nanocomposite as biosensing platform: A model study. Bioelectrochemistry 79 (2) (2010), 211-217.

[21] Soganci, T., Odaci Demirkol, D., Ak, M., Timur, S. A novel organic–inorganic hybrid conducting copolymer for mediated biosensor applications. RSC Advances 4 (86) (2014), 46357-46362.

[22] Karadag, M., Geyik, C., Odaci Demirkol, D., Ertas, F.N., Timur, S. A novel organic–inorganic hybrid conducting copolymer for mediated biosensor applications.Materials Science and Engineering: C 33 (2) (2013), 634-640.

[23] Akbulut, H., Yavuz, M., Guler, E., Odaci Demirkol, D., Endo, T., Yamada, S., Timur, S., Yagci Y. Electrochemical deposition of polypeptides: bio-based covering materials for surface design. Polymer Chemistry 5 (12) (2014), 3929-3936.

[24] Janssen, F.W., Ruelius, H.W. Pyranose oxidase from Polyporus obtusus. Methods Enzymol., 41 (1975) ,170-173.

[25] Baminger, U., Ludwig, R., Galhaup, C., Leitner, C., Kulbe, K.D., Haltrich, D. Continuous enzymatic regeneration of redox mediators used in biotransformation reactions employing flavoproteins. J. Mol. Catal. B Enzym., 11 (2001), 541-550.

[26] Giffhorn, F. Fungal pyranose oxidases: occurrence, properties and biotechnical applications in carbohydrate chemistry. Appl. Microbiol. Biotechnol., 54 (2000), 727-740.

[27] Leitner, C., Volc, J., Haltrich, D. Purification and

characterization of pyranose oxidase from the white rot fungus Trametes multicolor. Appl. Environ. Microbiol., 67 (2001), 3636-3644

[28] Costa-Ferreira, M., Couto, A. High ionic strength tolerance of pyranose oxidase from Trametes versicolor and its purification. Process Biochem., 38 (2003), 1019-1023.

[29] Trinder, Determination of glucose in blood using glucose-oxidase with an alternative oxygen acceptor. P. Ann. Clin. Biochem., 6 (1969), 24-27.

[30] Lin, Y., Lu, F., Wang, J. Disposable Carbon Nanotube Modified Screen-Printed Biosensor for Amperometric Detection of Organophosphorus Pesticides and Nerve Agents. Electroanalysis, 16 (1-2) (2004), 145-149.

[31] Li, G., Xu, H., Huang, W., Wang, Y., Wu, Y. and Parajuli, R. A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screenprinted carbon paste electrodes modified by carbon nanotubes. Meas. Sci. Technol. 19 (2008), 1-7

[32] Machida, Y., Nakanishi, T. Purification and Properties of Pyranose Oxidase from Coriolus versicolor. Agric. Biol. Chem., 48 (1984), 2463-2470.

[33] Rungsrisuriyachai, K. and Gadda, A pH switch affects the steady-state kinetic mechanism of pyranose-2-oxidase from Trametes ochracea. G. Arch. Biochem. Biophys., 483 (2009), 10-15.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

e-ISSN: 1308-6529