Black Holes with Anisotropic Fluid in Lyra Scalar-Tensor Theory

Melis ULU DOĞRU, Murat DEMİRTAŞ
1.181 220

Öz


In this paper, we investigate distribution of anisotropic fluid which is a resource of black holes in regard to Lyra scalar-tensor theory. As part of the theory, we obtain field equations of spherically symmetric space-time with anisotropic fluid. By using field equations, we suggest distribution of anisotropic fluid, responsible for space-time geometries such as Schwarzschild, Reissner-Nordström, Minkowski type, de Sitter type, Anti-de Sitter type, BTZ and charged BTZ black holes. Finally, we discuss obtained pressures and density of the fluid for different values of arbitrary constants, geometrically and physically.


Anahtar kelimeler


Lyra scalar-tensor theory; Black hole; Anisotropic fluid

Tam metin:

PDF


DOI: http://dx.doi.org/10.19113/sdufbed.38844

Referanslar


[1] Weyl, H. 1918. Gravitation und Elektrizitat. Sitzungesber Deutsch. Akad. Wiss., 1(1918), 465-478.

[2] Weyl, H. 1952. Gravitation and Electricity. The Principle of Relativity. Dover Books on Physics, 1(1952), 200-216.

[3] Lyra, G. 1951. Übereine Modifikation der Rieamannschen Geometrie. Mathematische Zeitschrift, 54(1951), 52-64.

[4] Sen, D. K. 1957. A Static Cosmological Model, Zeitschrift für Physik, 149(1957), 311-323.

[5] Sen, D. K., Dunn, K. A. 1971. A Scalar-Tensor Theory of Gravitation in a Modified Riemannian Manifold. Journal of Mathematical Physics, 12(1971), 578-586.

[6] Sharif, H., Kausar, H. R. 2011. Anisotropic fluid and Bianchi type III model in f(R) gravity. Physics Letters B, 697(2011), 1-6.

[7] Salart, D., Baas, A., Branciard, C., Gisin, N., Zbinden, H. 2008. Testing the Speed of `Spooky Action at a Distance'. Nature, 454(2008), 861-864.

[8] Yin, Y. J., Cao, H., Yong, J., Ren, H., Liang, S., Liao, F., Zhou, C., Liu, Y., Wu, G., Pan, Q., Zhang, C., Peng, C., Pan, J. 2013. Lower Bound on the Speed of Nonlocal Correlations without Locality and Measurement Choice Loopholes. Physical Review Letters, 110(2013), 260407.

[9] Faraoni, V. 2004. Cosmology in Scalar-Tensor Gravity. 1st edition. Kluwer Academic Publishers, Dordrecht, 265s.

[10] Rahaman, F., Gosh, A., Kalam M. 2006. Lyra black holes. Nuovo Cimento B, 121(2006), 649-659.

[11] Bhamra K. S. 1974. A Cosmological Model of Class One in Lyra’s Manifold. Australian Journal of Physics, 27(1974), 541-547.

[12] Reddy D. R. K., Venkateswarlu R. 1987. Birkhoff-type theorem in the scale-covariant theory of gravitation. Astrophysics Space Science, 136(1987), 183-186.

[13] Rahaman, F., Chakraborty, S., Begum, N., Hossain, M., Kalam, M. 2002. A study of four and higher-dimensional cosmological models in Lyra geometry. Fizika B, 11(2002), 57-62.

[14] Rahaman F., 2003. A study of global monopoles in higher dimensional space times. Astrophysics Space Science, 283(2003), 33-42.

[15] Rahaman F., Mondal R. 2007. Non Static Global Monopole in Lyra Geometry. Fizika B, 16 (2007), 223-230.

[16] Schwarzschild, K. 1916. Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie (On the gravitational field of a mass point according to Einstein’s theory), Sitzungsber. Preuss. Akad. Wiss., Berlin, 196s.

[17] Zel’dovich, Ya. B. 1972. A hypothesis, unifying the structure and the entropy of the Universe. Monthly Notices of the Royal Astronomical Society. 160(1972), 1-3.

[18] Zel’dovich, Ya. B. 1962. The Equation of State at Ultrahigh Densities and Its Relativistic Limitations. JETP, 14(1962) 1143-1147.

[19] Reissner, H. 1916. Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Annalen der Physik, 355(1916), 106-120.

[20] Nordström, G. 1918, On the Energy of the Gravitational Field in Einstein’s Theory, Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk., 20(1918), 1238-1245.

[21] Cognola, G., Elizalde, E., Zerbini, S. 2004. One-loop effective potential from higher-dimensional AdS black holes. Physics Letters B, 585(2004), 155-162.

[22] Hendi, S. H. 2008. Rotating Black Branes in Brans-Dicke-Born-Infeld Theory. Journal of Mathematical Physics, 49(2008), 082501-082508.

[23] Hendi, S. H. 2009. Topological black holes in Gauss-Bonnet gravity with conformally invariant Maxwell source. Physics Letters B, 677(2009), 123-132.

[24] Demirtaş, M. 2014. The investigation of some matter forms in Lyra Geometry, Çanakkale Onsekiz Mart University, Graduate School of Naturel and Applied Sciences, Thesis Master of Science, 30s, Çanakkale.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

e-ISSN: 1308-6529