Structural, Spectroscopic (FT-IR, Raman and NMR), Non-linear Optical (NLO), HOMO-LUMO and Theoretical (DFT/CAM-B3LYP) Analyses of N-Benzyloxycarbonyloxy-5-Norbornene-2,3-Dicarboximide Molecule

Nuri ÖZTÜRK, Yelda Bingöl ALPASLAN, Gökhan ALPASLAN, Can ALAŞALVAR, Halil GÖKCE
1.239 263

Öz


The experimental spectroscopic investigation of N-benzyloxycarbonyloxy-5-norbornene-2,3-dicarboximide (C17H15NO5) molecule has been done using 1H and 13C NMR chemical shifts, FT-IR and Raman spectroscopies. Conformational forms have been determined depending on orientation of N-benzyloxycarbonyloxy and 5-norbornene-2,3-dicarboximide (NDI) groups of the title compound. The structural geometric optimizations, vibrational wavenumbers, NMR chemical shifts (in vacuum and chloroform) and HOMO-LUMO analyses for all conformers of the title molecule have been done with DFT/CAM-B3LYP method at the 6-311++G(d,p) basis set. Additionally, based on the calculated HOMO and LUMO energy values, some molecular properties such as ionization potential (I), electron affinity (A), electronegativity (χ), chemical hardness (h), chemical softness (z), chemical potential (μ) and electrophilicity index (w) parameters are determined for all conformers. The non-linear optical (NLO) properties have been studied for the title molecule. We can say that the experimental spectral data are in accordance with calculated values.

Anahtar kelimeler


N-benzyloxycarbonyloxy-5-norbornene-2,3-dicarboximide; Vibrational spectroscopy; 1H and 13C NMR chemical shifts; Non-linear optical analyses; DFT/CAM-B3LYP

Tam metin:

PDF


DOI: http://dx.doi.org/10.19113/sdufbed.01322

Referanslar


[1] Kazunori, T., Seiji, O., Yasuo, T. 2006. Norbornene-Based Ring-Opening Polymerization Polymer, Product of Hydrogenation of Norbornene-Based Ring-Opening Polymerization Polymer, and Processes for Producing These. United States Patent, No. 7037993 B2.

[2] Syamkumar, V. M., Jinbok, S., Boo-Gyo, S., Andreas G., Do, Y. Y. 2011. Synthesis and Characterization of Substituted Polynorbornene Derivatives. Polymer, 52(2011), 4377-4386.

[3] Ashirov, R. V., Zemlyakov, D. I., Lyapkov, A. A., Kiselev, S. A. 2013. Kinetics of the Metathesis Polymerization of 5,6-Di(Methoxycarbonyl)Bicyclo[2.2.1]Hept-2-Enes on an Original Hoveyda-Grubbs II Type Catalyst. Kinetics and Catalysis, 54(4), 469-474.

[4] Bozhenkova, G. S., Samochernova, A. P., Ashirov, R. V., Lyapkov, A. A. 2015. Polymers Based on Norbornene Derivatives. Procedia Chemistry, 15, 8-13.

[5] Blank, F., Janiak, C. 2009. Metal Catalysts for the Vinyl/Addition Polymerization of Norbornene. Coordination Chemistry Reviews, 253(7-8), 827-861.

[6] Li, M., Song, H., Wang, B. 2016. Synthesis, Structures, and Norbornene Polymerization Behavior of Palladium Methyl Complexes Bearing N-Heterocyclic Carbene-Sulfonate Ligands. Journal of Organometallics Chemistry, 804, 118-122.

[7] Suslov, D. S., Bykov, M. V., Abramov, P. A., Pakhomova, M. V., Ushakov, I. A., Voronov, V. K., Tkacha, V. S. 2016. Synthesis, Characterization, and Application for Addition Polymerization of Norbornene of Novel Acetylacetonate Bis(Anilines) Palladium (II) Complexes. Inorganic Chemistry Communications, 66, 1–4.

[8] Fiorino, F., Magli, E., Severino, B., Corvino, A., Ciano, A., Perisutti, E., Frecentese, F., Massarelli, P., Nencini, C., Santagada, V., Caliendo, G. 2014. Synthesis and In Vitro Pharmacological Evaluation of Novel 2-Hydroxypropyl-4-arylpiperazine Derivatives as Serotoninergic Ligands. Archiv der Pharmazie, 347(10), 1–9.

[9] Vazquez-Vuelvas, O. F., Hernández-Madrigal, J. V., Pineda-Contreras, A., Hernández-Ortega, S., Reyes-Martínez, R., Morales-Morales, D. 2015. Exo Conformers of N-(pyridin-2-yl)- and N-(pyridin-3-yl)norbornene-5,6-dicarboximide Crystals. Acta Crystallographica Section C, C71, 175-180.

[10] Kosal, A. D. Ashfeld, B. L. 2013. N-Benzyloxycarbonyloxy -5-norbornene -2,3-dicarboximide. e-EROS Encyclopedia of Reagents for Organic Synthesis.

[11] Erdogdu, Y., Saglam, S., Dereli, Ö. 2015. Theoretical (DFT) and Experimental (FT-IR, FT-Raman, FT-NMR) Investigations on 7-Acetoxy-4-(bromomethyl)coumarin. Optics and Spectroscopy, 119(3), 411-423.

[12] Almeida, M. R., Stephani, R., Santos, H. F. D., de Oliveira, L. F. C. 2010. Spectroscopic and Theoretical Study of the “Azo”-Dye E124 in Condensate Phase: Evidence of a Dominant Hydrazo Form. The Journal of Physical Chemistry A, 114(1), 526-534.

[13] Suresh, S., Gunasekaran, S., Srinivasan, S. 2014. Spectroscopic (FT-IR, FT-Raman, NMR and UV–Visible) and Quantum Chemical Studies of Molecular Geometry, Frontier Molecular Orbital, NLO, NBO and Thermodynamic Properties of Salicylic Acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132, 130-141.

[14] Cyranski, M. K., Jezierska, A., Klimentowska, P., Panek, J. J., Sporzynski, A. 2008. Impact of Intermolecular Hydrogen Bond on Structural Properties of Pphenylboronic Acid: Quantum Chemical and X-ray Study. Journal of Physical Organic Chemistry, 21(6), 472-482.

[15] Sachan, A. K., Pathak, S. K., Sinha, L., Prasad, O., Karabacak, M., Asir, A.M. 2014. A Combined Experimental and Theoretical Investigation of 2-Thienylboronic Acid: Conformational Search, Molecular Structure, NBO, NLO and FT-IR, FT-Raman, NMR and UV Spectral Analysis. Journal of Molecular Structure, 1076, 639-650.

[16] Sert, Y., Ucun, F., Böyükata, M., 2012. Vibrational Spectroscopic Studies of 3-hydroxyphenylboronic Acid: Molecular Structure. Indian Journal of Physics, 86(10), 859-869.

[17] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ő., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. 2009. Gaussian 09, Revision D.01. Gaussian, Wallingford CT.

[18] Dennington, R., Keith, T., Millam, J. 2009. GaussView, Version 5, Semichem Inc., Shawnee Mission KS.

[19] Becke, A. D. 1993. Becke’s Three Parameter Hybrid Method Using the LYP Correlation Functional. The Journal of Chemical Physics, 98, 5648-5652.

[20] Lee, C., Yang, W., Parr, R. G. 1988. Development of the Colle-Salvetti Correlation-Energy Formula Into A Functional of the Electron Density. Physical Review B, 37, 785-789.

[21] Yanai, T., Tew, D. P. Handy, N. C. 2004. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chemical Physics Letters, 393(1-3), 51-57.

[22] London, F. 1937. Théorie Quantique Des Courants Interatomiques Dans Les Combinaisons Aromatiques. Journal de Physique et Le Radium, 8(10), 397-409.

[23] Ditchfield, R. 1974. Self-Consistent Perturbation Theory of Diamagnetism. Molecular Physics, 27(4), 789-807.

[24] Wolinski, K., Himton, J. F., Pulay, P. 1990. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. Journal of the American Chemical Society, 112(23), 8251-8260.

[25] Birney, D., Lim, T. K., Koh, J. H. P., Pool, B. R., White, J. M. 2002. Structural Investigations into the retro-Diels-Alder Reaction. Experimental and Theoretical Studies. Journal of the American Chemical Society, 124(18), 5091-5099.

[26] Dvorkin, A. A., Gifeysman, T. Sh., Simonov, Yu. A., Malinovsky, T. I. 1987. Structures of Isomeric N-(5-methyl-2-aminobenzhydrylidene)amino-5-norbornene-2,3-exo-dicarboximide and N-(5-methyl-2-aminobenzhydrylidene)amino-5-norbornene-2,3-endo-dicarboximide. Acta Crystallographica Section C, C43, 2347-2350.

[27] Miroslaw, B., Koziol, A. E., Bielenica, A., Dziuba, K., Struga, M. 2014. Substituent Effect on Supramolecular Motifs in Series of Succinimide Polycyclic Keto Derivatives – Spectroscopic, Theoretical and Crystallographic Studies. Journal of Molecular Structure, 1074, 695-702.

[28] Li, J., Pan, X. R. 2015. Synthesis and Structural Characterization of N-Phenyl-5-norbornene-2, 3-dicarboximide. Asian Journal of Chemistry, 27(8), 2806-2808.

[29] Hu, A.-F., Ji, T., Gao, Y.-X., Xu, P.-X., Zhao, Y.-F. 2008. Benzyl 2,5-dioxopyrrolidin-1-yl Carbonate. Acta Crystallographica Section E, E64, o1326.

[30] National Institute of Advanced Industrial Science and Technology (AIST), Spectral Database for Organic Compounds, SDBS. http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi (Access date: 10.09.2016).

[31] Colthup, N. B., Daly, L. H., Wiberley, E. 1964. Introduction to Infrared and Raman Spectroscopy. Academic Press, New York, 547s.

[32] Bellamy, L. J. 1975. The Infrared Spectra of Complex Molecules, 3rd ed. Halsted Press, John Wiley & Sons, Inc., New York, 433s.

[33] Silverstein, R. M., Webster, F. X., Kiemle, D. J. 2005. Spectroscopic Identification of Organic Compounds, 7th ed. John Willey & Sons, New York, 502s.

[34] Dereli, Ö. 2016. Molecular Structure and Spectral (FT-IR, Raman) Investigations of 3-aminocoumarin. Optics and Spectroscopy, 120(5), 690-700.

[35] Temel, E., Alaşalvar, C., Gokce, H., Guder, A., Albayrak, C., Alpaslan, Y. B., Alpaslan, G., Dilek, N. 2015. DFT Calculations, Spectroscopy and Antioxidant Activity Studies on (E)-2-nitro-4-[(phenylimino) methyl] phenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 534-546.

[36] Tamer, Ö., Avcı, D., Atalay, Y. 2015. Geometry Optimization, Spectral Analysis, Molecular Electrostatic Potential Surface, and Non-linear Optical Activity of 4-Methyl Anilinium Phenolsulfonate: a DFT Study. Journal of Applied Spectroscopy, 82(4), 687-699.

[37] Wade Jr, L. G. 2006. Organic Chemistry, 6th ed. Pearson Prentice Hall, New Jersey.

[38] Anderson, R. J., Bendell, D. J., Groundwater, P. W. 2004. Organic Spectroscopic Analysis The Royal Society of Chemistry. Sunderland UK, 176s.

[39] Kalinowski, H. O., Berger, S., Braun, S. 1988. Carbon-13 NMR Spectroscopy. John Wiley & Sons, Chichester, 792s.

[40] Pihlaja K., Kleinpeter, E. (Eds.) 1994. Carbon-13 Chemical Shifts in Structural and Sterochemical Analysis. VCH Publishers, Inc., New York, 379s.

[41] Fukui, K. 1982. Role of Frontier Orbitals in Chemical Reactions. Science 218(4574), 747-754.

[42] Gökce, H. Bahçeli, S. 2011. A Study on Quantum Chemical Calculations of 3-, 4-Nitrobenzaldehyde Oximes. Spectrochimica Acta Part A, 79(5), 1783-1793.

[43] Alpaslan, Y. B., Gökce, H., Alpaslan, G., Macit, M. 2015. Spectroscopic characterization and density functional studies of (Z)-1-[(2-methoxy-5-(trifluoromethyl) phenylamino) methylene] naphthalene-2(1H)-one. Journal of Molecular Structure, 1097, 171-180.

[44] Nalwa, H. S., Miyata, S. 1997. Non-linear Optics of Organic Molecules and Polymers. CRC Press, Boca Raton, FL, 611s.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

e-ISSN: 1308-6529