Investigation of Chemical Composition and Nutritional Value of Truffle Mushroom (Tuber nitidum Vittad.)

Şeyda KIVRAK, İbrahim KIVRAK
732 184


Truffles are very precious and expensive mushrooms owing to their distinctive aroma and great flavor. The present study was carried out to survey the nutritional value of Tuber nitidum, a wild edible mushroom belonging to Tuber genus. It was analyzed for fatty acid content, phenolic and volatile compounds and amino acid profile. The chemical composition of the studied mushroom species showed that this wild edible fungus is one of a rich phenolic and amino acid source. The characteristic mushroom odor compounds, 1-octen-3-ol (14.81%) and 1-octen-3-one (11.19%), have been also detected. However, it has been reported that p-hydroxy benzoic acid, gentisic acid, vanillic acid were found in ethyl acetate extract as phenolic ingredient. In the lipidic extract, it has been determined that 76.94% linoleic acid (C18:2n6c), 12.38% palmitic acid (C16:0), 6.38% oleic acid (C18:1n9c), 2.54% stearic acid (C18:0). The wild edible mushroom, Tuber nitidum, a wild edible mushroom, may be of value and importance in the food and pharmaceutical industry as a natural healthy product source.

Anahtar kelimeler

Phenolic compounds; Fatty acids; Volatile compounds; Tuber nitidum; Headspace-GC/MSD; UPLC-ESI-MS/MS

Tam metin:



[1] Heleno, S. A., Barros, L., Martins, A., Queiroz, M. J. R. P., Santos-Buelga, C., Ferreira, I. C. F. R. 2012. Phenolic, Polysaccharidic, and Lipidic Fractions of Mushrooms from Northeastern Portugal: Chemical Compounds with Antioxidant Properties. Journal of Agricultural and Food Chemistry, 60(2012), 4634−4640.

[2] Ferreira, I. C. F. R., Barros, L., Abreu, R. M. V. 2009. Antioxidants in wild mushrooms. Current Medicinal Chemistry, 16(2009), 1543–1560.

[3] Kalač, P. 2009. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 113(2009), 9−16.

[4] Thimmel, R., Kluthe, R. 1998. The nutritional database for edible mushrooms. Ernahrung, 22:2(1998), 63–65.

[5] Agrahar-Murugkar, D., Subbulakshmi, G. 2005. Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chemistry, 89(2005), 599–603.

[6] Alves, M. J., Ferreira, I. C. F. R., Dias, J., Teixeira, V., Martins, A., Pintado, M. A. 2012. A Review on Antimicrobial Activity of Mushroom (Basidiomycetes) Extracts and Isolated Compounds. Planta Medica, 78(2012), 1707–1718.

[7] Ferreira, I. C. F. R., Vaz, J. A., Vasconcelos, M. H., Martins, A. 2010. Compounds from Wild Mushrooms with Antitumor Potential. Anti-Cancer Agents in Medicinal Chemistry, 10(2012), 424–436.

[8] Heleno, S. A., Stojković, D., Barros, L., Glamočlija, J., Soković, M., Martins, A., Queiroz, M. J. R. P., Ferreira, I. C. F. R. 2013. A comparative study of chemical composition, antioxidant and antimicrobial properties of Morchella esculenta (L.) Pers. from Portugal and Serbia. Food Research International, 51(2013), 236–243.

[9] Liu, P., Li, H.-M., Tang, Y.-J. 2012. Comparison of free amino acids and 5′-nucleotides between Tuber fermentation mycelia and natural fruiting bodies, Food Chemistry, 132(2012), 1413–1419.

[10] Ceruti, A., Fontana, A., Nosenzo, C. 2003. The specie europee del genere Tuber. Una revisione storica. Torino, Italy, 467s.

[11] Streiblova, E., Gryndlerova, H., Valda S., Gryndler, M. 2010. Tuber aestivum – hypogeous fungus neglected in the Czech Republic. A review. Czech Mycology, 61:2(2010), 163–173.

[12] Chatin, G. A. 1892. La truffe. Baillière, Paris, France, 370s.

[13] Tang, Y., Li, Y.-Y., Li, H.-M., Wan, D.-J., Tang, Y.-J. 2011. Comparison of Lipid Content and Fatty Acid Composition between Tuber Fermentation Mycelia and Natural Fruiting Bodies. Journal of Agricultural and Food Chemistry, 59(2011), 4736–4742.

[14] Anonymous. 1995. Official methods of analysis (AOAC) (16th ed.). Arlington VA, USA: Association of Official Analytical Chemists.

[15] Kıvrak, İ., Kıvrak, Ş, Harmandar, M. 2014. Free amino acid profiling in the Giant Puffball Mushroom (Calvatia gigantea) using UPLC-MS/MS. Food Chemistry, 158(2014), 88–92.

[16] Kıvrak, İ., Kıvrak, Ş., Harmandar, M., Çetintaş, Y. 2013. Phenolic Compounds of Pinus brutia Ten.: Chemical Investigation and Quantitative Analysis Using an Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry with Electrospray Ionization Source. Records of Natural Products, 7:4(2013), 313-319.

[17] Heleno, S. A., Barros, L., Sousa, M. J., Martins, A., Ferreira, I. C. F. R. 2009. Study and characterization of selected nutrients in wild mushrooms from Portugal by gas chromatography and high performance liquid chromatography. Microchemical Journal, 93(2009), 195–199.

[18] Leal, A. R., Barros, L., Barreira, J. C. M., Sousa, M. J.; Martins, A.; Santos-Buelga, C., Ferreira, I. C. F. R. 2013. Portuguese wild mushrooms at the "pharma-nutrition" interface: Nutritional characterization and antioxidant properties,. Food Research International, 50(2013), 1–9.

[19] Vracaric, B. (ed.) (1977). Nutrition in nature. Military publishing institute and People’s book. (Ishrana u prirodi. Vojnoizdava1ki zavod i Narodna knjiga), Beograd.

[20] Petrovska, B. B. 2001. Protein fractions in edible Macedonian mushrooms. European Food Research and Technology, 212(2001), 469–472.

[21] Bokhary, H. A., Parvez, S. 1993. Chemical composition of desert truffles Terfezia claveryi. Journal of Food Composition and Analysis, 6(1993), 285–293.

[22] Al-Laith, A. A. A. 2010. Antioxidant components and antioxidant/antiradical activities of desert truffle (Tirmania nivea) from various Middle Eastern origins. Journal of Food Composition and Analysis, 23(2010), 15–22.

[23] Villares, A., García-Lafuente, A,, Guillamón, E., Ramos, Á. 2012. Identification and quantification of ergosterol and phenolic compounds occurring in Tuber spp. Truffles. Journal of Food Composition and Analysis, 26(2012), 177–182.

[24] Kim, M.-Y., Seguin, P., Ahn, J.-K., Kim, J.-J., Chun, S.-C., Kim, E.-H., Seo, S.-H., Kang, E.-Y., Kim, S.-L., Park, Y.-J., Ro, H.-M., Chung, I.-M. 2008. Phenolic Compound Concentration and Antioxidant Activities of Edible and Medicinal Mushrooms from Korea. Journal of Agricultural and Food Chemistry, 56(2008), 7265–7270.

[25] Palacios, I., Lozano, M., Moro, C., D’Arrigo, M., Rostagno, M. A., Martínez, J. A., García-Lafuente, A., Guillamón E., Villares, A. 2011. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry, 128(2011), 674–678.

[26] Mannina, L., Cristinzio, M., Sobolev, A. P., Ragni, P., Segre, A. 2004. High-Field Nuclear Magnetic Resonance (NMR) Study of Truffles (Tuber aestivum vittadini), Journal of Agricultural and Food Chemistry, 52(2004), 7988-7996.

[27] Bellina-Agostinone, C., D’Antonio, M., Pacioni, G. 1987. Odour composition of the summer truffle, Tuber aestivum. Transactions of the British Mycological Society, 88(1987), 568-569.

[28] Culleré, L., Ferreira, V., Chevret, B., Venturini, M. E., Sánchez-Gimeno, A. C., Blanco, D. 2010. Characterization of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography olfactometry. Food Chemistry, 122(2010), 300–306.

[29] Combet, E., Henderson, J., Eastwood, D. C., Burton, K. S. 2006. Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience, 47(2006), 317–326.

[30] Zawirska-Wojtasiak, R. 2004. Optic purity of (R)-(2)-1-octen-3-ol in the aroma of various species of edible mushrooms. Food Chemistry, 86(2004), 113–118.

[31] Shahidi, F., Naczk, M. 2004. Phenolics in Food and Nutraceuticals CRC Press, Boca Raton London New York Washington, D.C., 576.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

e-ISSN: 1308-6529