Karışık Ürolitik Kültür ile Antrakinon Boyanın Kesikli Sistemde Biyosorpsiyonu, İzoterm ve Kinetik Çalışmaları

Hasan KOÇYİĞİT, Esra MANAV
918 300

Öz


Bu çalışmada tekstil endüstri atıksularında yaygın olarak bulunan antrakinon yapıdaki bir reaktif boyar maddenin, Ürolitik Karışık Mikroorganizma Kültürünün (ÜKMK) kuru biyokütlesi kullanılarak biyosorpsiyon yöntemiyle giderimi ve optimum koşullarının araştırılması incelenmiştir. Ürolitik Karışık Mikroorganizma Kültürü sürekli karışım ve havalandırma sağlanan, zenginleştirilmiş içerikli bir ortamda yetiştirilmiştir. Başlangıç boyarmadde konsantrasyonu, biyokütle miktarı, sıcaklık, pH ve temas süresinin renk giderim verimine etkisi araştırılmıştır. Elde edilen sonuçlardan optimum koşullar 150 mg/L başlangıç boyar madde konsantrasyonunda, 0,2 g/L biyokütle ilavesiyle 150 rpm çalkalama hızı, 50 0C sıcaklık, pH 2 ve 20 dakikalık temas süresi olarak belirlenmiştir. Optimum koşullarda; giderim kapasitesi (qe), 620 mg/g; giderim verimi de %82,67 olarak hesaplanmıştır. Antrakinon boyarmaddesinin ürolitik mikroorganizma kültürü biyokütlesi ile biyosorpsiyon kinetiğinin, ikinci dereceden adsorpsiyon kinetiğine ve Freundlich İzotermine uygunluk gösterdiği görülmüştür.

Anahtar kelimeler


Antrakinon boya; Karışık ürolitik kültür; Biyosorpsiyon; İzoterm

Tam metin:

PDF


Referanslar


[1] Aksu, Z. 2004. Application of biosorption for the removal of organic pollutants: a review, Process Biochemistry, 40, 997-1026.

[2] Adak, A., Bandyopadhyay, M., Psal, A., 2005. Removal of crystal Violet Dye from Wastewater by Surfactant-Modified Alumina, Separation and Purification Technology, 44, 139-144.

[3] Banat, I. M., Nigam, P., Singh, D., Marchant, R., 1996. Microbial decolorization of textile dye-containing effluents: a review. Bioresource Technology, 58, 217–227.

[4] Daneshvar, N., Rabbani M., Modirshahla N., Behnajady M.A., 2004. Kinetic modelling of photocatalytic degradation of Acid Red 27 in UV/TiO2. Journal of Photochemistry and Photobiology A: Chemistry process, 168, 39-45.

[5] Aksu, A., Kocyigit H., Murathan A., 2011. Reaktif Mavi 221’in Pomza ile Adsorpsiyonu ve Kinetiği. Gazi Üniversitesi Müh. Mim. Fak. Dergisi, 26, 4, 807-812.

[6] Correia, V.M., Stephonson T., Judd, S.J., 1994. Characterisation of Textile Wastewaters: A Rewiev. Environmental Technology, 15, 917-929.

[7] Robinson, T., McMullan, G., Marchant, R., Nigam, P., 2001. Remediation of Dyes in Textile Effluent: A Critical Rewiev on Current Treatment Technologies With a Proposed Alternative. Bioresource Technoloy, 77, 247-255.

[8] Kocyigit H., Ugurlu A., 2015, Biological decolorization of reactive azo dye by Anaerobic/Aerobic-Sequencing Batch Reactor System, Global NEST Journal, 17, 210-219.

[9] Van der Zee, F. P., Villaverde, S., 2005. Combined anaerobic-aerobic treatment of azo dyes-A short review of bioreactor studies, Water Research, 39, 1425-1440.

[10] Cirik, K., Kitis, M., Cinar, O., 2013. The effect of biological sulfate reduction on anaerobic color removal in anaerobic–aerobic sequencing batch reactors, Bioprocess and Biosystems Engineering, 36, 579-589.

[11] Gibbons, R. J., Doetsch, R. N., 1959. Physiological study of an obligately anaerobic ureolytic bacterium, J. Bacteriol, 77, 417-428.

[12] Huet, M., Aladame, N., 1952. Recherches sur I’urease des bacteries anaerobies, Ann. Ins. Pasteur, 82, 766-767.

[13] Güngörmedi, G., Şaşmaz, S., Aytar, P., Gedikli, S., Ünal, A., Çabuk, A., Kolankaya, N., 2009. Trametes Versicolor Biyokütlesi İle Reaktif Red 198 Boyar maddesinin Biyosorpsiyonu. Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 22, 247-264.

[14] Aksu, Z., 2001. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling, Biochemical Engineering Journal, 7, 79–84.

[15] Aksu, Z., Dönmez, G., 2003. A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye, Chemosphere, 50, 1075–1083.

[16] Santos, A.B., Cervantes, F.J., Lier, J.B., 2007. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology, Bioresource Technology, 98, 2369-2385.

[17] Boeije, G., Wagner, J., Koormann, F., Vanrolleghem, P.A., Feijtel, T., 1999. Spatially aggregated predicted environmental concentrations (PECs) for geo-referenced exposure assessment, In:Proceedings of the Ninth Annual Meeting of SETAC-Europe (Society of Environmental Toxicology and Chemistry). Leipzig, Germany, May 25-29.

[18] Veli, S., Özbay, B., Özbay, İ., Arslan, A., Çebi, E., 2018. Elektrokoagülasyon Prosesi İle Gıda Endüstrisi Atıksuyunun Arıtımında Optimum Koşulların Belirlenmesi, Süleyman Demirel University Journal of Natural and Applied Sciences, DOI: 10.19113/sdufbed.28988

[19] Banat, I. M., Nigam P., Singh D., Marchant R., 1996. Microbial decolourization of textile dye-containing effluents: a review. Bioresearch Technology, 58, 217–227.

[20] Fu, Y., Viraraghavan, T., 2001, Fungal decolorization of dye wastewater: a review. Bioresearch Technology, 79, 251-262.

[21] Şimşek, İ., Karataş, M., Baştürk, E., 2013. Cu(II) removal from aqueous solution by ureolytic mixed culture (UMC), Colloids and Surfaces B: Biointerfaces, 102, 479-483.

[22] Józwiak, T., Filipkowska, U., Szymczyk, P., Zysk, M., 2017. Effect of the form and deacetylation degree of chitosan sorbents onsorption effectiveness of Reactive Black 5 from aqueous solutions, International Journal of Biological Macromolecules, 95, 1169-1178.

[23] Somasekhara Reddy, M.C., Nirmala, V., Ashwini. C., 2017. Bengal Gram Seed Husk as an adsorbent for the removal of dye from aqueous solutions – Batch studies, Arabian Journal of Chemistry, 10, 2554-2566.

[24] Somasekhara Reddy, M.C., Sivarama Krishna, L., Varada Reddy, A., 2012. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium. J. Haz. Mats. 203–204, 118–127.

[25] Jaqueline M.M., Dara D.R.G., Tito R.S.C., Guilherme L.D., Luiz A.A.P., 2016. Comparison of chitosan with different physical forms to remove Reactive Black 5 from aqueous solutions, Journal of Environmental Chemical Engineering, 4, 2259-2267.

[26] Elwakeel, K.Z., 2009. Removal of Reactive Black 5 from aqueous solutions using magnetic chitosan resins, J. Hazard. Mater. 167, 383–392.

[27] Intidhar, J.I., Luqman, C.A., Thomas, S.Y.C., Siti Nurul Ain B.M.J., 2018. Equilibrium, kinetics and thermodynamic adsorption studies of acid dyes on adsorbent developed from kenaf core fiber, Adsorption Science & Technology, 36, 694-712.

[28] Coskun, R., Savci, S., Delibas, A., 2018. Adsorption properties of activated almond shells for methylene blue (MB), Environmental Research & Technology, 1, 31-38.

[29] Kyzasa, G.Z., Lazaridis, N.K., Mitropoulos, A.C., 2012. Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach, Chemical Engineering Journal, 189–190, 148–159.

[30] Santos, S.C., Boaventura R.A., 2015. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent. Journal of hazardous materials, 291, 74-82.

[31] Argun, M.E., Güçlü, D., Karatas, M., 2014. Adsorption of Reactive Blue 114 dye by using a new adsorbent: Pomelo peel, Journal of Industrial and Engineering Chemistry, 20, 1079–1084.