Silah Hedef Atama Problemi için Tavlama Benzetimli Bir Hibrit Yapay Arı Kolonisi Algoritması

Hakan KUTUCU, Rafet DURGUT
1.196 396

Öz


Bu çalışmada, sadece savunma alanında uygulamaları olmayıp iş dünyasında da uygulamaları olan çok zor kombinatoriyel optimizasyon problemlerinden statik silah hedef atama problemini  ele alıyoruz.  Silah hedef atama probleminin amacı, hedeflerin minimum toplam hayatta kalma değeri ile  silahların hedeflere atanmasını bulmaktır. Silah hedef atama probleminin NP-tam problemi olduğu bilinmektedir. Bu makalede, silah hedef atama  problemine etkili bir çözüm sağlamak için  tavlama benzetimi algoritması kullanarak hibrit bir yapay arı kolonisi algoritması önermekteyiz. Önerilen algoritmayı problem örnekleri ile test ettik ve literatürdeki diğer meta-sezgisel yöntemler ile karşılaştırdık. Hesaplamalı testler, algoritmamızın rekabetçi ve tatmin edici olduğunu göstermektedir.


Anahtar kelimeler


Hedef silah atama; Yapay arı kolonisi; Tavlama benzetimi; Meta-sezgisel algoritmalar

Tam metin:

PDF


Referanslar


[1] Ahuja, R., Kumar, A., Jha K., and Orlin J. 2007. Exact and Heuristic Algorithms for theWeapon-Target Assignment Problem. Operations Research 55(6), 1136–1146.

[2] Hosein, P., and Athans, M. 1990. Some analytical results for the dynamic weapon-target allocation problem, Tech. Rep., MIT, Laboratory for Information and Decision Systems.

[3] Cai, H., Liu, J., Chen, Y., and Wang, H. 2006. Survey of the research on dynamic weapon-target assignment problem, Journal of Systems Engineering and Electronics, 17(3), 559-565.

[4] Manne, A. S. 1958. A target-assignment problem. Operations Research 6, 346-351.

[5] Lloyd, S. P., and Witsenhausen H. S. 1986. Weapon Allocation is NP-Complete [C]. Proc. 1986 Summer Compute. Simulation Conference.

[6] Ma, F., and Ni, M. 2015. An optimal assignment of multi-type weapons to single-target, 2015 IEEE Advanced Information Technology Electronic and Automation Control Conference. IEEE, 1-4.

[7] Çetin, E. and Esen, S. T. 2006. A weapon-target assignment approach to media allocation", Applied Mathematics and Computation, 175(2). 1266-1275.

[8] Senay, N. 2012. The strategic level optimization of air to ground missiles for Turkish air force decision support system, Air Force Institute of Technology, 7.

[9] Li, Y., Kou, Y., Li, Z., Xu A., and Chang, Y. 2017. A Modified Pareto Ant Colony Optimization Approach to Solve Biobjective Weapon-Target Assignment Problem, International Journal of Aerospace Engineering, 1-14.

[10] Lee, Z. J., Su, S. F. and Lee C. Y. 2003. Efficiently solving general weapon-target assignment problem by genetic algorithms with greedy eugenics IEEE Trans. Syst. Man Cybern,B: Cybern., 33(1), 113-121.

[11] Lu H., Zhang H., Zhang X. and Han Ruixin H. 2006. An Improved Genetic Algorithm for Target Assignment, Optimization of Naval Fleet Air Defense. 6th World Congress on Intelligent Control and Automation, Dalian, China, 3401-3405.

[12] Liu, X., Liu, Z., Hou, W. -S. and Xu, J.-H. 2013. Improved MOPSO algorithm for multi-objective programming model of weapon-target assignment, Systems Engineering & Electronics, 35(2), 326–330.

[13] Karaboga, D. 2005. An idea based on honey bee swarm for numerical optimization, Tech. Rep. TR06, Erciyes University, Engineering Faculty, Computer Engineering Department.

[14] Karaboga D., and Basturk, B. 2008. On The Performance Of Artificial Bee Colony (ABC) Algorithm, Applied Soft Computing, 8(1), 687-697.

[15] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E. 1953. Equation of state calculations by fast computing machines, Journal of Chemical Physics, 21, 1087-1092.

[16] Kirkpatrick, S., Gelatt, Jr., C. D., and Vecchi, M. P. 1983. Optimization by simulated annealing, Science, 220, 671-680.

[17] Ahonen H., Alvarenga A.G., Amaral A.R.S., 2014. Simulated annealing and tabu search approaches for the Corridor Allocation Problem, European Journal of Operational Research, 232(1), 221-233.

[18] Paul G., 2010. Comparative performance of tabu search and simulated annealing heuristics for the quadratic assignment problem, Operations Research Letters, 38(6), 577-581.

[19] Birim S., 2016. Vehicle Routing Problem with Cross Docking: A Simulated Annealing Approach, Procedia - Social and Behavioral Sciences, 235, 149-158.

[20] Larrañaga P., Kuijpers C.M.H., Murga R.H., Inza I., Dizdarevic S. 1999. Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artif Intell Rev. 13(2), 129–170.

[21] Holland J.H. 1992. Adaptation in natural and artificial systems. Cambridge: MIT Press.

[22] Mühlenbein H. and Schilierkamp V. 1993. Predictive Model for Breeder Genetic Algorithm, Evolutionary Computation. 1(1), 25–49.

[23] Chen, Shi-Ming, Ali Sarosh, and Yun-Feng Dong, 2012. Chen, Shi-Ming, Ali Sarosh, and Yun-Feng Dong. Simulated annealing based artificial bee colony algorithm for global numerical optimization. Applied mathematics and computation 219.8 (2012): 3575-3589.

[24] Sonuc E., Sen B., and Bayir S. 2017. A Parallel Simulated Annealing Algorithm For Weapon-Target Assignment Problem, International Journal of Advanced Computer Science and Applications, 8(4), 87-92.

[25] Durgut R., Kutucu H., and Akleylek S. 2017. An Artificial Bee Colony Algorithm for Solving the Weapon Target Assignment Problem. In Proceedings of the 7th International Conference on Information Communication and Management (ICICM 2017). Moscow, Russian Federation, ACM, 28-31.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

e-ISSN: 1308-6529