Epileptik EEG İşaretlerinin Sınıflandırılması İçin Yeni Bir Öznitelik Çıkarım Yöntemi

Yılmaz KAYA, Ramazan TEKİN
808 257

Öz


Epilepsi en sık karşılaşılan nörolojik hastalıklardan biri olup beyinde bir grup nöronun anormal aktivitesi sonucu oluşmaktadır. Epilepsi genellikle elektroansefalografi (EEG) sinyalleri kullanılarak teşhis edilmektedir. Bu sebeple, EEG işaretlerinden etkin özniteliklerin çıkarılması doğru sınıflandırma için önemli bir basamaktır. Bu çalışmada epileptik EEG işaretlerinden kararlı öznitelikler çıkaracak motif algoritması isimli yeni bir yaklaşım önerilmiştir. Bu yaklaşım, EEG işaretlerinde belirli büyüklükteki bir pencere içine giren değerlerin birbirleri ile olan büyüklük/küçüklük ilişkisine bağımlıdır. Pencere içindeki değerlerin birbirlerine göre oluşturdukları görünüm bir motif olarak ele alınmaktadır. İşaret üzerindeki bu motiflerin frekansları öznitelik vektörü olarak kullanılmıştır. Motif sayısı sinyal üzerinde tanımlanan pencere boyutuna bağlıdır. Motif öznitelikleri elde edildikten sonra sınıflama aşamasında RF, YSA, SVM gibi farklı sınıflandırma algoritmaları kullanılmıştır.  Önerilen yöntemin başarısını test etmek için farklı durumlarda (nöbet öncesi, nöbet sonrası, gözler açık ve gözler kapalı vb.) kayıt altına alınmış EEG işaretlerinin birleşimlerinden elde edilen setler kullanılmış ve yüksek sınıflandırma başarıları elde edilmiştir.

Anahtar kelimeler


Elektroansefalografi; Epilepsi; Motif öznitelikler; Öznitelik çıkarımı

Tam metin:

PDF


Referanslar


[1] Kaya, Y., Uyar, M., Tekin, R., Yıldırım, S. 2014. 1D-local binary pattern based feature extraction for classification of epileptic EEG signals. Applied Mathematics and Computation, 243(2014), 209–219.

[2] Polat, K., Güneş, S. 2007. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187(2), 1017–1026.

[3] Yuan, Q., Zhou, W., Li, S., Cai, D. 2011. Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy research, 96(1–2), 29–38.

[4] Übeyli, E. D. 2008. Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Computers in Biology and Medicine, 38(1), 14–22.

[5] Übeyli, E. D. 2008. Implementing eigenvector methods/probabilistic neural networks for analysis of EEG signals. Neural networks, 21(9), 1410–1417.

[6] Übeyli, E. D. 2008. Wavelet/mixture of experts network structure for EEG signals classification. Expert systems with applications, 34(3), 1954–1962.

[7] Übeyli, E. D. 2009. Probabilistic neural networks combined with wavelet coefficients for analysis of electroencephalogram signals. Expert systems, 26(2), 147-159.

[8] Übeyli, E. D. 2010. Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals. Expert Systems with Applications, 37(1), 233-239.

[9] Altunay, S., Telatar, Z., Erogul, O. 2010. Epileptic EEG detection using the linear prediction error energy. Expert Systems with Applications, 37(8), 5661-5665.

[10] Kaya, Y. 2015. Hidden pattern discovery on epileptic EEG with 1-D local binary patterns and epileptic seizures detection by grey relational analysis. Australasian physical & engineering sciences in medicine, 38(3), 435-446.

[11] Li, Y., Wen, P. P. 2011. Clustering technique-based least square support vector machine for EEG signal classification. Computer methods and programs in biomedicine, 104(3), 358-372.

[12] Chandaka, S., Chatterjee, A., Munshi, S. 2009. Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Systems with Applications, 36(2), 1329-1336.

[13] Guler, I., Ubeyli, E. D. 2007. Multiclass support vector machines for EEG-signals classification. IEEE Transactions on Information Technology in Biomedicine, 11(2), 117-126.

[14] Guo, L., Rivero, D., Dorado, J., Rabunal, J. R., Pazos, A. 2010. Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. Journal of neuroscience methods, 191(1), 101-109.

[15] Guo, L., Rivero, D., Pazos, A. 2010. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Journal of neuroscience methods, 193(1), 156-163.

[16] Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C. E. 2001. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6), 061907.

[17] Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C. E. 2001. EEG Verisi. http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html (Erişim Tarihi: 25.07.2018).

[18] Subasi, A. 2007. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084-1093.

[19] Menéndez, L. Á., de Cos Juez, F. J., Lasheras, F. S., Riesgo, J. A. Á. 2010. Artificial neural networks applied to cancer detection in a breast screening programme. Mathematical and Computer Modelling, 52(7-8), 983-991.

[20] Witten, I. H., Frank, E. 2005. Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.

[21] Tzallas, A. T., Tsipouras, M. G., Fotiadis, D. I. 2009. Epileptic seizure detection in EEGs using time–frequency analysis. IEEE transactions on information technology in biomedicine, 13(5), 703-710.

[22] Kumar, S. P., Sriraam, N., Benakop, P. G., Jinaga, B. C. 2010. Entropies based detection of epileptic seizures with artificial neural network classifiers. Expert Systems with Applications, 37(4), 3284-3291.

[23] Fathima, T., Bedeeuzzaman, M., Farooq, O., Khan, Y. U. 2011. Wavelet based features for epileptic seizure detection. MES Journal of Technology and Management, 2(1), 108-112.

[24] Nigam, V. P., Graupe, D. 2004. A neural-network-based detection of epilepsy. Neurological Research, 26(1), 55-60.

[25] Srinivasan, V., Eswaran, C., Sriraam, N. 2005. Artificial neural network based epileptic detection using time-domain and frequency-domain features. Journal of Medical Systems, 29(6), 647-660.

[26] Orhan, U., Hekim, M., Ozer, M. 2011. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Systems with Applications, 38(10), 13475-13481.

[27] Wang, D., Miao, D., Xie, C. 2011. Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Systems with Applications, 38(11), 14314-14320.

[28] Guo, L., Rivero, D., Dorado, J., Munteanu, C. R., Pazos, A. 2011. Automatic feature extraction using genetic programming: An application to epileptic EEG classification. Expert Systems with Applications, 38(8), 10425-10436.

[29] Nicolaou, N., Georgiou, J. 2012. Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Systems with Applications, 39(1), 202-209.

[30] Subasi, A., Gursoy, M. I. 2010. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert systems with applications, 37(12), 8659-8666.

[31] Chen, G. 2014. Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Systems with Applications, 41(5), 2391-2394.

[32] Swami, P., Gandhi, T. K., Panigrahi, B. K., Tripathi, M., Anand, S. 2016. A novel robust diagnostic model to detect seizures in electroencephalography. Expert Systems with Applications, 56, 116-130.

[33] Gandhi, T. K., Chakraborty, P., Roy, G. G., Panigrahi, B. K. 2012. Discrete harmony search based expert model for epileptic seizure detection in electroencephalography. Expert Systems with Applications, 39(4), 4055-4062.

[34] Bhardwaj, A., Tiwari, A., Krishna, R., Varma, V. 2016. A novel genetic programming approach for epileptic seizure detection. Computer methods and programs in biomedicine, 124(2016), 2-18.

[35] Kumar, Y., Dewal, M. L., Anand, R. S. 2014. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing, 133(2014), 271–279.

[36] Dhiman, R., Saini, J. S. 2014. Genetic algorithms tuned expert model for detection of epileptic seizures from EEG signatures. Applied Soft Computing, 19(2014), 8-17.

[37] Tawfik, N. S., Youssef, S. M., Kholief, M. 2016. A hybrid automated detection of epileptic seizures in EEG records. Computers & Electrical Engineering, 53(2014), 177-190.

[38] Amorim, P., Moraes, T., Fazanaro, D., Silva, J., Pedrini, H. 2017. Electroencephalogram signal classification based on shearlet and contourlet transforms. Expert Systems with Applications, 67(2017), 140-147.

[39] Hassan, A. R., Siuly, S., Zhang, Y. 2016. Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Computer methods and programs in biomedicine, 137, 247-259.

[40] Li, D., Xie, Q., Jin, Q., Hirasawa, K. 2016. A sequential method using multiplicative extreme learning machine for epileptic seizure detection. Neurocomputing, 214(2016), 692–707.

[41] Ong, P., Zainuddin, Z., Lai, K. H. 2017. A novel selection of optimal statistical features in the DWPT domain for discrimination of ictal and seizure-free electroencephalography signals. Pattern Analysis and Applications, 21(2), 515-527.

[42] Mursalin, M., Zhang, Y., Chen, Y., Chawla, N. V. 2017. Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neurocomputing, 241(2017), 204–214.

[43] Sharmila, A., Geethanjali, P. 2016. DWT based epileptic seizure detection from EEG signals using Naïve Bayes/k-NN classifiers. Ieee Access, 4(2016), 7716–7727.