Studies on İdentification of the Drought Tolerant Genes of Wheat

Nahid Hazrati, Saime Ünver İkincikarakaya, Mohammad Hasanzadeh
1.302 418


Bread wheat (Triticum aestivum L.), is known as the base food staple resource. With increasing the human population, new methods and approaches are needed to gain wheat cultivars with advanced characteristics. Nowadays, the problem is to produce high quality and yielding cultivars. Breeding of tolerant cultivars against biotic and abiotic stresses is desired.Drought stress, appears as water loss from the plant during the definite time, which is higher than the absorbed water by plant from the environment. Drought stress is expected to increase as the most important stress factor in the future due to the climate changes which is being evident from now. Lower cell growth would lead to the deficit in cell wall synthesis and thereby, to the unexpanded leaves and lowering the photosynthetic assimilates. Under drought stress, seed germination potential declines, and chlorophyll and protein synthesis, photosynthesis, and respiration is negatively affected.In winter wheat, resistance against drought stress is controlled by complex morphologic and physiologic mechanisms. In the recent century, despite of using classic breeding methods and gaining the high quality yielding cultivars, desirable tolerance towards environmental abiotic and biotic stresses mainly disease and pests, has not been achieved. In this study, some mechanisms of drought tolerance in wheat were considered.


Drought tolerans, Plant breeding, QTL, Transgenic wheat

Full Text:



Abebe T., Guenzi A.C., Martin B. and Cushman J.C., 2003. Tolerance of Mannitol-Accumulating Transgenic Wheat to Water Stress and Salinity. Plant Physiol, 131:1748-1755

Aprile A., Mastrangelo A.M., De Leonardis A.M., Galiba G., Roncaglia E., Ferrari F., De BellisL., Turchi L., Giuliano G. and Cattivelli L., 2009. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BioMed Central Genomics, 10:279

Araus J.L., Bort J., Steduto P.,Villegas D. & Royo C., 2003. Breeding cereals for Mediterranean conditions: ecophysiology clues for biotechnology application. Annals of Applied Biology, 142: 129–141

Bhatnagar-Mathur P., Devi M.J, Reddy D.S, Lavanya M., Vadez V., Serraj R., Yamaguchi-Shinozaki K., Sharma K.K., 2007. Stressinducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports, 26: 2071–2082

Blum A., 1988. Plant breeding for stress environments. CRS Press. Inc. Boca Raton. Florida

Budak H., Kantar M. and Yucebilgili Kurtoglu K., 2013. Drought Tolerance in Modern and Wild Wheat. Hindawi Publishing Corporation. Scientific World Journal. Article ID 548246. 16 pages

Budak H, Hussain B, Khan Z, Ozturk N.Z. and Ullah N., 2015. From Genetics to Functional Genomics: Improvement in Drought Signaling and Tolerance in Wheat. Front. Plant Sci,. 6:1012. doi: 10.3389/fpls.2015.01012

Bahieldin A., Mahfouz H.T., Eissa H.F., Saleh O.M., Ramadan A.M., Ahmed I.A., et al., 2005. Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol. Plant, 123: 421–427. doi: 10.1111/j.1399-3054.2005.00470.x

Burg M.B. and Ferraris J.D., 2008. Intracellular organic osmolytes: Function and regulation. J. Biol. Chem, 283:7309-7313

Cattivelli L., Rizza F., Badeck F.W., Mazzucotelli E., Mastrangelo A.M., Francia E., Mare C., Tondelli A., Stanca A.M., 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res, 105:1–14

Cakmak I.,Torun A., Millet E., Feldman M., Fahima T., Korol A.B., Nevo E., Braun H.J. & Ozkan H., 2004. Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Science and Plant Nutrition, 50: 1047–1054

Chamarthi S.K., Kumar A., Vuong T., Blair M.W., Gaur P.M., Nguyen H.T., Varshney R.K., 2011. Trait mapping and molecular Breeding in legumes: concepts and examples in soybean, common bean and chickpea. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI International, Oxfordshire, UK

Collins N.C., Tardieu F., Tuberosa R., 2008. Quantitative trait loci and crop performance under abiotic stress: Where do we stand? Plant Physiol, 147:469–486

Dong P., Wei Y.M. and Chen G.Y., 2009. EST-SSR diversity correlated with ecological and genetic factors of wild emmer wheat in Israel, Hereditas, 146(1):1–10

Edae E.A., Byrne P.F., Manmathan H., Haley S.D., Moragues M., Lopes M.S., et al., 2013. Association mapping and nucleotide sequence variation in five drought tolerance candidate genes in spring wheat. PlantGenome 6, 13.doi: 10.3835/plantgenome2013.04.0010

Eser D., Geçit H.H. ve Emeklier, H.Y., 2000. Tarımsal ekoloji terim ve tanımlar sözlüğü. Ankara Üniversitesi Ziraat Fakültesi yayınları, 1474. 95s. Ankara

Finkelstein R., 2013. Abscisic acid synthesis and response. Arabidopsis Book, 11, e0166. doi:10.1199/tab.0166

Fleury D., Jefferies S., Kuchel H. and Langridge P., +2010. Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany, 61(12):3211-3222

Gruszka Vendruscolo E.C., Schuster I., Pileggi M., Alberto Scapim C., Correa Molinari H.B., Marur C.J. and Esteves Vieira L.G., 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 164:1367-1376

Krannich C.T., Maletzki L., Kurowsky C. and Horn R., 2015. Network Candidate Genes in Breeding for Drought Tolerant Crops.Int. J. Mol. Sci,16:16378-16400

Langridge P. and Reynolds, M.P., 2015. Genomic tools to assist breeding for drought tolerance. Curr.Opin.Biotechnol, 32:130–135. doi: 10.1016/j.copbio.2014.11.027

Lanning,S.,Martin,J.,Stougaard,R.,Guillen-Portal,F.,Blake, N.,Sherman, J.,etal. 2012 .Evaluation of near-isogenic lines for three height- reducing genes in hard red spring wheat. CropSci. 52,1145–1152.doi: 10.2135/cropsci2011.11.0625

Lata C. and Prasad M., 2011. Role of DREBs in regulation of abiotic stress responses in plants. J. Exp.Bot, 62: 4731–4748.doi:10.1093/jxb/err210

Lesage V. S., Merlino M., Chambon C., Bouchet B., Marion D. and Branlard, G., 2012. Proteomes of hard and soft near-isogenic wheat lines reveal that kernel hardness is related to the amplification of a stress response during endosperm development. J. Exp. Bot. 63,1001–1011.doi:10.1093/jxb/err330

Lucas S., Durmaz E., Akpnar B.A. and Budak H., 2011. The drought response displayed by a DRE-binding protein from Triticumdicoccoides. Plant Physiology and Biochemistry, 49(3):346–351

Maccaferri M., Sanguineti M.C. and Corneti S., 2008. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics, 178:489–511

Mathews K.L, Malosetti M., Chapman S., McIntyre L., Reynolds M., Shorter R. and van Eeuwijk F., 2008. Multi-environment QTL mixedmodels for drought stress adaptation in wheat. Theoretical and Applied Genetics, 117:1077–1091

McIntyre C.L., Mathews K.L., Rattey A., Chapman S.C., Drenth J., Ghaderi M., Reynolds M. and Shorter R., 2009. Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theoretical and Applied Genetics, 120:527–541

Merchuk-Ovnat L., Barak L., Fahima T., OrdoN F., Lidzbarsky G. A., Krugman T. and Saranga y., 2016. AncestralQTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars. Front. Plant Sci, 7:452. doi: 10.3389/fpls.2016.00452

Miura H., Wickramasinghe M., Subasinghe R., Araki E. and Komae K., 2002. Development of near-isogenic lines of wheat carrying different null Wx alleles and their starch properties. Euphytica, 123: 353–359.doi: 10.1023/A:1015042322687

Miyakawa T., Fujita Y., Yamaguchi-Shinozaki K. and Tanokura M., 2013. Structure and function of abscisic acid receptors. Trends Plant Sci, 18:259-266

Moeller C., Evers J.B. and Rebetzke,G. 2014. Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibitiongenetin. Front. Plant Sci, 5:617.doi:10.3389/fpls.2014.0061

Morran S., Eini O., Pyvovarenko T., Parent B., Singh R., Ismagul A., Eliby S., Shirley N., Langridge P., Lopato S., 2010. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal, 9:230–249.

Munns R., James R.A., Xu B., Athman A., Conn S.J., Jordans C., etal., 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat.Biotechnol, 30:360–364.doi:10.1038/nbt.2120

Nevo E. and Chen G., 2010. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ, 33: 670–685.doi: 10.1111/j.1365-3040.2009.02107.x

Oh S.J., Song S.I., Kim Y.S., Jang H.J., Kim S.Y, Kim M., Kim Y.K., Nahm B.H., Kim J.K., 2005. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology, 138: 341–351

Özgen M., Ertunç F., Kınacı G., Yıldız M., Birsen M., Ulukan H., Koyuncu N. ve.Sancak C., 2005. Tarım teknolojilerinde yeni yaklaşımlar ve uygulamalar. Türkiye Ziraat Mühendisliği 6. Teknik Kongresi,315-346. Ankara

Passioura J., 2007. The drought environment: physical, biological and agricultural perspectives. Journal of Experimental Botany, 58:113–117

Passioura J., 2012. Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct.PlantBiol, 39:851–859.doi:10.1071/fp12079

Pellegrineschi A., Reynolds M., Pacheco M., Brito R.M., Almeraya R., Yamaguchi Shinozaki K. and Hoisington D., 2004. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 47:493–500

Peng J., Sun D., Peng Y. and Nevo E,, 2012. Gene discovery in Triticum dicoccoides ,the direct progenitor of cultivated wheats. Cereal Res.Commun, 41:1–22.doi:10.1556/CRC.2012.0030

Rouf Mir R., Zaman-Allah M., Sreenivasulu N., Trethowan R. and Varshney R.K., 2012. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet, 125:625–645

Saint Pierre C., Crossa J.L., Bonnett D., Yamaguchi-Shinozaki K. and Reynolds M.P., 2012. Phenotyping transgenic wheat for drought resistance. Journal of Experimental Botany, 63(5):1799–1808

Salvi S. and Tuberosa R., 2015. The crop QTLome comes of age. Curr.Opin. Biotechnol, 32:179–185.doi:10.1016/j.copbio.2015.01.001

Sawahel W.A., Hassan AH., 2002. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett, 24:721–5

Shinozaki K. and Yamaguchi-Shinozaki K., 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58:221–227

Su J., Wu R., 2004. Stress inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than with constitutive synthesis. Plant Sci,166:941–8.

Tanio M., and Kato K., 2007.Development of near-isogenic lines for photoperiod-insensitivegenes, Ppd-B1 and Ppd-D1, carried by the Japanese wheat cultivars and their effect on apical development. Breeding Sci, 57:65–72.doi:10.1270/jsbbs.57.65

Uauy C., Distelfeld A., Fahima T., Blechl A. and Dubcovsky J., 2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314:1298–1301.

Varshney R.K., Bansal K.C., Aggarwal P.K., Datta S.K. and Craufurd P.Q., 2011. Agricultural biotechnology for crop improvement in avariable climate: hope or hype? Trends Plant Sci, 16:363–371

Von Korff M., Grando S., Del Greco A., This D., Baum M. and Ceccarelli S., 2008. Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theoretical and Applied Genetics, 117:653–669

Wang Q., Guan Y., Wu Y., Chen H., Chen F., Chu C. 2008. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 67:589–602

Worch S., Rajesh K., Harshavardhan V.T, Pietsch C., Korzun V., Kuntze L., Bo¨rner A., Wobus U., Ro¨der M.S., Sreenivasulu N., 2011. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biol 11:1

Xiao B., Chen X., Xiang C., Tang N., Zhang Q., Xiong L., 2009. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Molecular Plant, 2: 73–83

Xie W. and Nevo E., 2008. Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica, 164: 603–614.doi: 10.1007/s10681-008-9703-8

Yang S., Vanderbeld B., Wan J., Huang Y., 2010. Narrowing down the targets: towards successful genetic engineering of droughttolerant crops. Molecular Plant, 3:469–490

Zhang L., Zhao G., Xia C., Jia J., Liu X. and Kong X., 2012. A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis.J Exp Bot.63(16):5873-85

Zhang W., Li A., Tian J., and Zhao L., 2012. Development of near isogenic lines of wheat carrying different spike branching genes and their agronomic and spike characters. J. Agric. Sci, 4:215.doi:10.5539/jas.v4n8p215

Zhu X., Gong H., Chen G., Wang S., Zhang C., 2005. Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. J Arid Environ, 62:1–14