Clay mineralogy of red clay deposits from the central Carpathian Basin (Hungary): implications for Plio-Pleistocene chemical weathering and palaeoclimate

János KOVÁCS, Béla RAUCSIK, Andrea VARGA, Gábor ÚJVÁRI, György VARGA, Franz OTTNER
486 131

Abstract


Geochemical and mineralogical studies of palaeosols provide essential information for palaeoclimatic and palaeoenvironmental interpretation of continental deposits and can present a proxy for palaeoclimate. Red clays in the central Carpathian Basin (Hungary) (Tengelic Red Clay Formation; Kerecsend Red Clay Formation), overlain by loess-palaeosol sequences, were studied. Results from geochemical climofunctions applied to Upper Pliocene–Lower Pleistocene red clays and palaeosols located in the Carpathian Basin, and clay mineralogy, indicate that the palaeoclimate was considerably more humid and warmer during the Late Pliocene-Early Pleistocene in comparison to modern values.

Keywords


Palaeosol, red clay, loess, Pliocene, Pleistocene, palaeoclimate, East Central Europe

Full Text:

PDF

References


Balogh, K., Árva-Sós, E., Pécskay, Z. & Ravasz-Baranyai, L. 1986. K/ Ar dating of post-Sarmatian alkali basaltic rocks in Hungary. Acta Mineralogica-Petrographica 28, 75–93.

Berényi Üveges, J., Horváth, Z., Michéli, E., Mindszenty, A. & Németh, T. 2003. Reconstructing quaternary pedogenesis in a paleosol sequence in Hungary. Quaternary International 106/107, 61–71.

Bokhorst, M.P., Beets, C.J., Marković, S.B., Gerasimenko, N.P., Matviishina, Z.N. & Frechen, M. 2009. Pedo-chemical climate proxies in late Pleistocene Serbian-Ukranian loess sequences. Quaternary International 198, 113–123.

Bronger, A. 2007. Time dependence of the rate and direction of mineral weathering and clay mineral formation with special consideration to kaolinites. Revista Mexicana de Ciencias Geológicas 24, 510–523.

Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N. & Markovič, S.B. 20 An evaluation of geochemical weathering indices in loesspaleosol studies. Quaternary International 240, 12–21. Chamley, H. 1989. Clay Sedimentology. Springer Verlag, Berlin, New York.

Chandler, M., Dowsett, H. & Haywood, A. 2008. The PRISM Model/

Data Cooperative: Mid-Pliocene data-model comparisons. PAGES News 16, 24–25. Dezső, J., Raucsik, B. & Viczián, I. 2007. Villányi-hegységi karsztos hasadékkitöltések szemcseösszetételi és ásványtani vizsgálata. Acta geographica ac geologica et meteorologica Debrecina 2, 151–180.

Eronen, J.T. & Rook, L. 2004. The Mio-Pliocene European primate fossil record: dynamics and habitat tracking. Journal of Human Evolution 47, 323–341.

Fábián, Á.P. & Matyasovszky, I. 2010. Analysis of climate change in Hungary according to an extended Köppen classification system, 1971-2060. Időjárás 114, 251–261.

Fedo, C.M. Nesbitt, H.W. & Young, G.M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–924.

Fekete, J. 2002. Physical and chemical features of red clays in Northern Hungary. Acta Geologica Hungarica 45, 231–246.

Földvári, M. & Kovács-Pálffy, P. 2002. Mineralogical study of the Tengelic Formation and the loess complex of the Tolna Hegyhát and Mórágy Hills areas (Hungary). Acta Geologica Hungarica 45, 247–263.

Fürsich, F.T., Singh, I.B., Joachimski, M., Krumm, S., Schlirf, M. & Schlirf, S. 2005. Palaeoclimate reconstructions of the Middle Jurassic of Kachchh (western India): an integrated approach based on palaeoecological, oxygen isotopic, and clay mineralogical data. Palaeogeography, Palaeoclimatology, Palaeoecology 217, 289–309.

Gábris, G. 2007. Kapcsolat a negyedidőszaki felszínalakító folyamatok időrendje és az oxigén-izotóp-rétegtan között – magyarországi lösz-paleotalaj-sorozatok és folyóvízi teraszok példáján. Földtani Közlöny 137, 515–540.

Gibbard, P. & Cohen, K.M. 2008. Global chronostratigraphical correlation table for the last 2.7 million years. Episodes 31, 243–247.

Gulbranson, E.L., Montañez, I.P. & Tabor, N.J. 2011. A proxy for humidity and floral province from paleosols. Journal of Geology 119, 559–573.

Gyalog, L. & Budai, T. 2004. Proposal for new lithostratigraphic units of Hungary. Annual Report of the Geological Institute of Hungary 2002, 195–232.

Hamer, J.M.M., Sheldon, N.D. & Nichols, G.J. 2007. Global aridity during the Early Miocene? A terrestrial paleoclimate record from the Ebro Basin, Spain. Journal of Geology 115, 601–608.

Harnois, L. 1988. The CIW index: A new chemical index of weathering. Sedimentary Geology 55, 319–322.

Haywood, A.M., Sellwood, B.W. & Valdes, P.J. 2000. Regional warming: Pliocene (3 Ma) paleoclimate of Europe and the Mediterranean. Geology 28, 1063–1066.

Haywood, A.M. & Valdes, P.J. 2004. Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters 218, 363–377.

Jámbor, Á. 1997. A Közép-Dunántşl fiatal kainozoos rétegtanának és fejlődéstörténetének néhány kérdése. Annual Report of the Geological Institute of Hungary 1996, 191–202.

Jámbor, Á. 2001. Quaternary. In: Haas, J. (ed.), Geology of Hungary. Eötvös University Press, Budapest, 265–278.

Jánossy, D. 1986. Pleistocene Vertebrate Faunas of Hungary (Developments in Palaeontology and Stratigraphy). Elsevier, Amsterdam.

Justyák, J. 1998. Magyarország éghajlata. KLTE, Debrecen.

Kaiser, M. 1999. Jelentés a Tengelici Formáció rétegtani helyzetének vizsgálatáról. Unpublished report, Geological Institute of Hungary, Budapest.

Koloszár, L. 2004. A Tengelici Formáció kifejlődései a DK-Dunántşlon.

Földtani Közlöny 134, 345–369. Koloszár, L. 2010. The thickest and the most complete loess sequence in the Carpathian basin: the borehole Udvari-2A. Central European

Journal of Geosciences 2, 165–174. Koloszár, L. & Marsi, I. 2002. Posztpannóniai képződmények rétegtani korrelációja a Mórágyi-rög térségében. Földtani Közlöny 132, 133–149.

Koloszár, L. & Marsi, I. 2005. Formations of Late Neogene and Pleistocene terrestrial sediments in the region of Mórágy Hill (Hungary). Acta Geologica Hungarica 48, 317–337.

Koloszár, L., Marsi, I. & Chikán, G. 2000. Cenozoic sedimentary cover of the eastern part of Mórágy Hills. Annual Report of Geological

Institute of Hungary 1999, 117–135.

Konert, M. & Vandenberghe, J., 1997. Comparison of laser grainsize analysis with pipette and sieve analysis, a solution for the underestimation of the clay fraction. Sedimentology 44, 523–535.

Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rube, F. 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15, 259–263.

Kovács, J. 2003. Terrestrial red clays in the Carpathian Basin, a paleoenvironmental approach. Geomorphologia Slovaca 3, 86–89.

Kovács, J. 2007. Chemical weathering intensity of the Late Cenozoic “red clay” deposits in the Carpathian Basin. Geochemistry International 45, 1056–1063.

Kovács, J. 2008. Grain-size analysis of the Neogene red clay formation in the Pannonian Basin. International Journal of Earth Sciences 97, 171–178.

Kovács, J., Fábián, S.A., Varga, G., Újvári, G., Varga, G. & Dezső, J. 20 Plio-Pleistocene red clay deposits in the Pannonian basin: a review. Quaternary International 240, 35–43. Kovács, J., Varga, G. & Dezső, J. 2008. Comparative study on the Late

Cenozoic red clay deposits from China and Central Europe (Hungary). Geological Quarterly 52, 369–381. Kretzoi, M. 1956. Die altpleistozänen Wirbeltierfaunen des Villányer Gebirges. Geologica Hungarica, Ser. Palaeontologica 27, 1–264.

Kretzoi, M. 1969. Sketch of the Late Cenozoic (Pliocene and Quaternary) terrestrial stratigraphy of Hungary. Földrajzi Közlemények 93, 179–204.

Kretzoi, M. 1987. Remarks on the correlation between European and Asian late Cenozoic local biostratigraphies. Vertebrata Palasiatica 25, 145–157.

Kuhlemann, J. 2007. Paleogeographic and paleotopographic evolution of the Swiss and Eastern Alps since the Oligocene. Global and Planetary Change 58, 224–236.

Kuhlemann, J., Frisch, W., Székely, B., Dunkl, I. & Kázmér, M. 2002. Post-collisional sediment budget history of the Alps, tectonic versus climatic control. International Journal of Earth Sciences 91, 818–837.

Kuhlemann, J., Taubald, H., Vennemann, T., Dunkl, I. & Frisch, W. 200 Clay mineral and geochemical composition of Cenozoic paleosol in the Eastern Alps (Austria). Austrian Journal of Earth Sciences 101, 60–69. Marbut, C.F. 1935. Atlas of American Agriculture. III. Soils of the United States. Washington, D.C., Government Printing Office.

Marsi, I. 2000. Geology of overlying beds of granites in the eastern part of the Mórágy Hills. Annual Report of Geological Institute of Hungary 1999, 149–162.

Marsi, I., Don, Gy., Földvári, M., Koloszár, L., Kovács-Pálffy, P., Krolopp, E., Lantos, M., Nagy-Bodor, E. & Zilahi-Sebess, L. 200 Quaternary sediments of the north-eastern Mórágy Block. Annual Report of Geological Institute of Hungary 2003, 343–369.

Marsi, I. & Koloszár, L. 2004. A beremendi Szőlő-hegy pliocén és kvarter képződményei. Földtani Közlöny 134, 75–94.

Maynard, J.B. 1992. Chemistry of modern soils as a guide to interpreting Precambrian paleosols. Journal of Geology 100, 279–289.

Mikes, T., Mulch, A., Rojay, B., Lüdecke, T. & Schemmel, F. 2011. Neogene topography and precipitation patterns of the Central Anatolian Plateau. Geophysical Research Abstracts 13, EGU2011-12391.

Montuire, S., Maridet, O. & Legendre, S. 2006. Late Miocene–Early Pliocene temperature estimates in Europe using rodents. Palaeogeography, Palaeoclimatology, Palaeoecology 238, 247– 2

Mosbrugger, V., Utescher, T. & Dilcher, D.L. 2005. Cenozoic continental climatic evolution of Central Europe. Proceedings of the Natural Academy of Sciences 102, 14964–14969.

Muhs, D.R., Bettis, E.A., Aleinikoff, J.N., McGeehin, J.P., Beann, J., Skipp, G. & Marshall, B.D. 2008. Origin and paleoclimatic significance of Quaternary loess in Nebraska: evidence from stratigraphy, chronology, sedimentology, and geochemistry. Geological Society of America Bulletin 120, 1378–1407.

Nemecz, E., Pécsi, M., Hartyáni, Z. & Horváth, T. 2000. The origin of the silt size quartz grains and minerals in loess. Quaternary International 68–71, 199–208.

Nesbitt, H.W., Fedo, C.M. & Young, G.M. 1997. Quartz and feldspar stability, steady and nonsteady-state weathering, and petrogenesis of siliciclastic sands and muds. Journal of Geology 105, 173–191.

Nesbitt, H.W., Markovics, G. & Price, R.C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta 44, 1659–1666.

Nesbitt, H.W. & Young, G.M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717.

Nesbitt, H.W. & Young, G.M. 1989. Formation and diagenesis of weathering profiles. Journal of Geology 97, 129–147.

Nordt, L.C., & Driese, S.G. 2010. A modern soil characterization approach to reconstructing physical and chemical properties of paleo-vertisols. American Journal of Science 310, 37–64.

Pécsi, M. 1979. Lithostratigraphical subdivision of the loess profiles at Paks. Acta Geologica Hungarica 22, 409–418.

Pécsi, M. 1993. Negyedkor és löszkutatás [Loess and the Quaternary].

Akadémiai Kiadó, Budapest. Pécsi, M. 1995. Loess stratigraphy and Quaternary climatic change.

In: Pécsi, M. & Schweitzer, F. (eds.), Concept of Loess, LoessPaleosol Stratigraphy. Geographical Research Institute, Hungarian Academy of Sciences, Budapest, 23–30. Pécsi-Donáth, É. 1979. Thermal investigation of the loesses and fossil soils of Paks. Acta Geologica Hungarica 22, 419–426.

Retallack, G.J. 2001. Soils of the Past: An Introduction to Paleopedology, 2nd ed. Blackwell Science, London.

Rudnick, R.L. & Gao, S. 2003. Composition of the continental crust. In: Holland, H.D. & Turekian, K.K. (eds.), Treatise on Geochemistry 3, Elsevier-Pergamon, Oxford-London, 1–64.

Ruffell, A., McKinley, J.M. & Worden, R.H. 2002. Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe. Philosophical Transactions of the Royal Society, London A 360, 675–693.

Schweitzer, F. & Szöőr, G. 1997. Geomorphological and stratigraphical significance of Pliocene red clay in Hungary. Zeitschrift für Geomorpholologie, Suppl. 110, 95–105.

Sheldon, N.D. 2006. Quaternary glacial-interglacial climate cycles in

Hawaii. Journal of Geology 114, 367–376. Sheldon, N.D. & Retallack, G.J. 2004. Regional paleoprecipitation records from the Late Eocene and Oligocene of North America.

Journal of Geology 112, 487–494. Sheldon, N.D., Retallack, G.J. & Tanaka, S. 2002. Geochemical climofunctions from North American soils and application to palaeosols across the Eocene-Oligocene boundary in Oregon.

Journal of Geology 110, 687–696. Sheldon, N.D. & Tabor, N.J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. EarthScience Reviews 95, 1–52.

Taylor, S.R. & McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications Ltd., London.

Terhorst, B., Ottner, F. & Wriessnig, K. 2012. Weathering intensity and pedostratigraphy of the Middle to Upper Pleistocene loess/palaeosol sequence of Wels-Aschet (Upper Austria). Quaternary International 265, 142–154.

Thiry, M. 2000. Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Science Reviews 49, 201–221.

Újvári, G., Varga, A. & Balogh-Brunstad, Zs. 2008. Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quaternary Research 69, 421–437.

Újvári, G., Varga, A., Raucsik, B. & Kovács, J. (in press) The Paks loess-paleosol sequence: a record of chemical weathering and provenance for the last 800 ka in the mid-Carpathian Basin. Quaternary International, doi: 10.1016/j.quaint.2012.04.004. van Dam, J.A. 2006. Geographic and temporal patterns in the late Neogene (12–3 Ma) aridification of Europe: The use of small mammals as paleoprecipitation proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 238, 190–218.

Varga, G. 2011. Similarities among the Plio-Pleistocene terrestrial aeolian dust deposits in the World and in Hungary. Quaternary International 234, 98–108.

Varga, G., Kovács, J. & Újvári, G. 2012. Late Pleistocene variations of the background aeolian dust concentration in the Carpathian Basin: an estimate using decomposition of grain-size distribution curves of loess deposits. Netherlands Journal of Geosciences – Geologie en Mijnbouw 91, 111–123.

Varga, A., Újvári, G. & Raucsik, B. 2011. Tectonic versus climatic control on the evolution of a loess–paleosol sequence at Beremend, Hungary: an integrated approach based on paleoecological, clay mineralogical, and geochemical data. Quaternary International 240, 71–86.

Viczián, I. 2002. Typical clay mineral associations from geological formations in Hungary: a review of recent investigations. Geologica Carpathica 53, 65–69.

Viczián, I. 2007. Mineralogy of Pliocene to Middle Pleistocene red clays in SE Transdanubia (Hungary). Review of the quantitative data. Acta Mineralogica-Petrographica 47, 25–46.

Vincze, L., Kozák, M., Kovács-Pálffy, P., Papp, I. & Püspöki, Z. 2005.

Origin of red clays around Miskolc (North Hungary). Acta Mineralogica-Petrographica 46, 15–27. Westaway, R. 2002. Long-term river terrace sequences: evidence for global increases in surface uplift rates in the Late Pliocene and early Middle Pleistocene caused by flow in the lower continental crust induced by surface processes. Netherlands

Journal of Geosciences - Geologie en Mijnbouw 81, 305–328. Willett, S.D. 2010. Late Neogene erosion of the Alps: a climate driver?

Annual Review of Earth and Planetary Sciences 38, 409–435. Yang, S.L. & Ding, Z.L. 2004. Comparison of particle size characteristics of the Tertiary “red clay” and Pleistocene loess in the Chinese Loess Plateau: implications for origin and sources of the “red clay”. Sedimentology 51, 77–93.

Zuchiewicz, W. 1998. Quaternary tectonics of the Outer West Carpathians, Poland. Tectonophysics 297, 121–132.

Zuchiewicz, W. 2009. Neotectonics of the Polish Carpathians in the light of geomorphic studies: a state of the art. Acta Geodynamica et Geomaterialia 6, 291–308.