URGANLI TERMAL KAYNAKLARI (AHMETLI-MANISA)

Thermal Springs in Urganli (Ahmetli-Manisa)

Arş. Gör. Dr. Mehmet Akif CEYLAN*

ÖZET

ABSTRACT

The Urganlı thermal springs, the subject of this survey, is on the south-east of Yenicambazlı about 200 m. in the county Ahmetli of Manisa. This is exactly in Ahmetli-Turgutlu area of Gediz graben which lies direction of south and west in western Anatolian.

There are a lot of springs which have different flows in the area of research. The total flow of these is about 30 lt/seconds. Springs have same physical and chemical specialities that cause to recover varies illness. Therefore they are used especially in hot springs.

As a result of evaporation and settle, travertines have appeared in where spring up and then flow off with topographical slope. Because travertines have different figures and dimensions, they give an interesting view. Besides there one actual travertines have especially white green, yellow and red colors they are seen.

Giriş

Urganlı termal kaynakları, Manisa’nın Ahmetli ilçesine bağlı Yenicambazlı köyünün 200 m. kadar güneydoğusunda yer alır (Şekil: 1). Bilindiği gibi, Manisa termal kaynaklar bakımından oldukça zengindir. Bu kaynaklar, tarihi çağlardan beri daima bir cazibe merkezi olmuş ve bunların yakınında yerleşmeler kurulmuş ve gelişmiştir.

Şekil 1. Araştırma Alanının Lokasyonu

Figure 1. Location of the Research Study

Osmanlı İmparatorluğunun 16. yüzyıla ait idare takımatında, Saruhan sancağına (merkezi Manisa şehri) bağlı illica kazasının bulunduğu ve bu kazanın merkezinin bugünbeli Urganlı köyü olduğu ifade edilmektedir.1 Hatta, o dönemde ait bazı belgelerde kazanın adı, Urganlı (veya Ulgamli) namı diğer illica kazası şeklinde yer almıştır.2 Bu itibarla, kaplica ve urganlı adının birlikte kullanılarak en azından 16. yüzyılın başlarına kadar uzandığı tarihi belgelerden anlaşılmaktadır. Bunun birlikte, Ahmetli ilicası, ilica, Musulca pınarı ve Turgutlu kaplica gibi isimler de kullanılmaktadır.

Kaynak Sahası ve Yanık Çevresinin Yapısal Özellikleri

İnceleme sahasının temelinde metamorfolik seriler yer almaktadır. Bu seriler daha çok, gnays, mikaşist, kuartzit ve mermerlerden meydana gelmektedir.3

Mermerler, genellikle koyu ve açık gri renkli olup çok çatlaklıdır. Bunlar, Yenicambazlı'nın kuzeyinde (200 m.) ve kaynak sahasının 1.5 km. kadar doğusunda ayrıt edilmektedir. Bu metamorfik serilerin üzerinde ise, muhtemelen Mesozoik yaşlı gri ve esmer renkli kalkerler ile silsilî kalkerler bulunmaktadır.

İnceleme sahasının geniş bir kesiminde, Neojen'e ait litolojik birimler görülmektedir (Şekil: 2). Bu birimler, daha çok kil, marn, kurum ve çakılardan oluşur. Bunların tabaka eğimleri, çoğunlukla 15-30 derece arasında değişmekte olup, Gediz nehrine doğrudur. Yalçınlar (1954), Yenicambazlı'nın 15-25 km. kadar batısında yer alan Sinirli, Yeniköy, Develi ve Gümülceli civarındaki Neojen arazi içinde omurgali tabakaların bulunduğu ve bu tabakaların, üst Miozen (Ponsien) katına ait olabileceğini belirtmektedir.4

Travertenler ve alüvyonlar ise, sahanın en genç litolojik birimlerini teşkil etmektedir.

Urganlı termal kaynakları, Ege bölgesinde kabaca doğu-batı doğrultusunda uzanan Gediz grabeninin Ahmetli-Turgutlu kesimine tekabül eder. Gediz grabeni, kökeni derine inen kaynakların yüksek ışılı olmalarıyla karakterize olmaktadır.5 Ayrıca burası, termal kaynakların (Urganlı, Kırşunk, Sart ve Alanşehir) ve maden sularının (Kırşunk ve Sarıkız) yanında, depremselliğin yüksekliği ile de dikkati çekmektedir.

Karamanderesi (1972), bu yörede yapılan jeofizik çalışmalarında, Kargin köyünden batıya doğru uzanan bir fay hattının tespit edildiğini kaydetmektedir. Bu fay hattının Yenicambazlı köy civarında takip edilmemesini ise, arazinin örtülü olmasıına bağlamaktadır.6 Daha önce burada inceleme yapan Ürgün (1966) de, termal kaynakları örtülü olan bu fay hattının üstünde göstermiştir.7

Ayrıca inceleme sahasının Kara tepe ve Cambazlı köyü civarında kuzeydoğu-güneybatı doğrultusunda uzanan muhtemel faylar da vardır.

Urganlı Termal Kaynakları

a) **Su Çıkış Noktaları**: Kaynak sahası, Gediz nehrinin 1 km. kadar kuzeyinde dir. Su çıkış noktaları, Gediz'den 30-60 m. ve deniz seviyesinden 70-100 m. arasında değişen yüksekliklerde yer almaktadır. Kaynakların bulunduğu sahanın genişliği ise yaklaşık 87.4 ha dir. Dolayısıyla kaynaklar, oldukça geniş bir alana ve genellikle de düzensiz bir şekilde dağılmıştır. Burada büyük kücüklükte çok sayıda kaynak mevcuttur. Hatta Ürgün (1966), kaynak sayısının 230 civarında olduğunu ileri sürmüştür.8 Ancak, enemli kaynak sayısı 13 tür. Bunlar, Şaçma-

6- Karamanderesi, İ. H.-1972: Urganlı kaplıcaları (Manisa-Turgutlu) civarının detay jeoloji ve jeotermal alan analizleri hakkında rapor. MTA. Enst. rapor no. 5462 (yayınlanmamış), s. 17, Ankara.
8- Ürgün, S.-1966: A.g.e. s. 23.
Figure 2- Geological map of Urganlı Termal Springs and Environs.
Şekil 3- Urganlı Termal Kaynakları ve Travertenleri.

Figure 3- Urganlı Thermal Springs and Travertines.
l, Sıra, Çamur, Kargin, Tek, Kırk Damlalar (veya Kırk Damla), Urganlı İlçesi, Çingilli, Musulcalı, Çoban, Uyuz, Acısır ve Kum Kaldırırın kaynaklarıdır (Şekil: 3).

Urganlı İlçesi ve Çingilli kaynaklarının suları, kaplumbağa tesislerinde kullanılmak amacıyla kaptaja alınmıştır. Diğerlerinin suları ise, yüzeysel akışa geçerek çevre ve yenerin yetişmeli ve zeminin litolojik özellikleri ne bağlı olarak yer yer bataklık alanlar meydana getirmektedir.

Kaynak sahasında henüz sondaj kuyusu açılmamıştır. Bununla birlikte, kaynak sahasının yaklaşık 1.5 km. güney doğusunda, Yenicambazlı’nın içme ve kullanma suyunun temin edildiği bir sondaj kuyusu vardır. Bu sondaj kuyusu, kaynak sahasına göre daha düşük kütçeler (45 m.) olup, yaklaşık 50 m. derinli-ğindedir.

b) Suların Fiziksel, Kimyasal ve Biyolojik Özellikleri: Kaynak sularının sıcaklığı genellikle 35-80 °C arasında değişme gösterir. Su sıcaklığı yüksek olan kaynaklar (Sıra 82, Kargin 76, Musulcalı 77 ve Kırk Damlalar 74 °C) çoğunlukla sahanın kuzyeyinde ve sıcaklığı düşük olan kaynaklar (Acısır 20, Kum Kaldırırın 40 ve Uyuz 55 °C) ise güney kesiminde yer almaktadır (Şekil: 3).

Termal sular, sıcaklık değerlerine göre, bazı sınıflandırmalara tabi tutulurlar. Urganlı termal kaynakları, Yenal ve diğerleri (1975)’nin Türkiye Maden Suları¹⁰ isimli eserinde hipertermal sınıfta dahil edilmiştir. Bununla birlikte TS. (8363)’nin kriterleri, sıcaklığı yüksek olan kaynaklara uygulandığında ise çok sıcak sular (Acrotermal 50-100 °C) sınıfta dahil olmaktadır.

Kaynak suyunun pH değeri 6.5-7.5 arasında ve elektriki iletkenliği (EC) 2420 micromho/cm.dir. İçeriği, sodum (Na) ve bikarbonat (HCO₃⁻) bakımından zengindir. Bunların yanında su, klorür (Cl), kalsiyum (Ca), potasyum (K), sülfat

(SO₄) magnezyum (Mg) ve serbest karbondioxitsit ile az miktarda radyoaktif elementlere (Rn ve Ra) de sahiptir. Tablo 1'de verilen analiz sonuçlarına göre, kimyasal özellikleri bakımından bıkarbonatlı, sodyumlu ve karbondioxitsitli sulaların niteliklerini taşımaktadır.

Tablo: 1-Urganlı kaplica suyunun kimyasal analizi (Yenal ve diğerleri-1975 göre)

Table: 1- Chemical analysis of the Urganlı thermal spring water

<table>
<thead>
<tr>
<th>İyonlar</th>
<th>mg/lt.</th>
<th>milival/l.</th>
<th>% milival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amonyum NH₄</td>
<td>1.9320</td>
<td>0.1073</td>
<td>0.3896</td>
</tr>
<tr>
<td>Lityum Li</td>
<td>0.0015</td>
<td>0.0002</td>
<td>0.0007</td>
</tr>
<tr>
<td>Sodyum Na</td>
<td>509.8032</td>
<td>22.1750</td>
<td>80.5058</td>
</tr>
<tr>
<td>Potasyum K</td>
<td>53.8600</td>
<td>1.3775</td>
<td>5.0009</td>
</tr>
<tr>
<td>Kalsiyum Ca²</td>
<td>62.9520</td>
<td>3.1476</td>
<td>11.4273</td>
</tr>
<tr>
<td>Magnezyum Mg²</td>
<td>8.4645</td>
<td>0.6967</td>
<td>2.5294</td>
</tr>
<tr>
<td>Demir Fe²</td>
<td>0.2250</td>
<td>0.0081</td>
<td>0.0294</td>
</tr>
<tr>
<td>Alüminyum AP</td>
<td>0.2150</td>
<td>0.0239</td>
<td>0.0868</td>
</tr>
<tr>
<td>Çinko Zn²</td>
<td>0.2720</td>
<td>0.0083</td>
<td>0.0301</td>
</tr>
<tr>
<td>Klorür Cl</td>
<td>74.0000</td>
<td>2.0874</td>
<td>7.8972</td>
</tr>
<tr>
<td>Iyodür I</td>
<td>0.0475</td>
<td>0.0003</td>
<td>0.0011</td>
</tr>
<tr>
<td>Fluorür F</td>
<td>3.5000</td>
<td>0.1843</td>
<td>0.6708</td>
</tr>
<tr>
<td>Sulfat SO₄</td>
<td>9.5000</td>
<td>0.1979</td>
<td>0.7203</td>
</tr>
<tr>
<td>Nitrit NO₂</td>
<td>0.0224</td>
<td>0.0005</td>
<td>0.0018</td>
</tr>
<tr>
<td>Hidrofosfat HPO₄</td>
<td>0.2626</td>
<td>0.0055</td>
<td>0.0200</td>
</tr>
<tr>
<td>Bıkarbonat HCO₃</td>
<td>1525.0000</td>
<td>25.000</td>
<td>90.9888</td>
</tr>
</tbody>
</table>

Metabolik asidi H₂O₂	27.3375 mg/lt.
Metasilikat asidi H₂SiO₃	61.7500 mg/lt.
Toplam sülfür H₂S	0.181 mg/lt.

Gazlar

| Serbest karbondioxitsit | 336.160 mg/lt. |

Radyoaktivite

| Radon Rn | 145.00 Pci/l. |
| Radyum Ra | 4.46 Pci/l. |
c) Termal Kaynakların Oluşturduğu Travertenler

Kaynaklarla ilgili önemli haiz olan bir diğer konuyu da travertenler teşkil eder. Suların yüzeye çıktığı ve daha sonra topografik eğimi takiben ağısa geçtiği yerlerde, buharlaşma ve çökme sonucu travertenler meydana gelmiştir. Travertenler, kaynak sahasının çeşitli kesimlerine dağılmış bir haldedir.

Eski travertenler, daha geniş bir alanda ve genellikle Gediz nehrine doğru eğimli yüzeyler halinde eğildir. Bu yüzeyler ise yer yer ince bir toprak tabakası ve bitkiler tarafından örtülmüşdür.

Yeni travertenler şekli itibariyle adeta bir duvara benzemekte, yüksekliği 10 m.ye, genişliği 25 m.ye ve uzunluğu ise 400-450 m.ye kadar ulaşmaktadır. Bu özelliklerinden dolayı eski travertenlerden kolayca ayırt edilmektedir. Bu travertenlerde, bazen enine ve genellikle uzun eksen paralel olarak uzanan ve çoğunlukla zemin yüzeyine kadar inebilen çatılar ve yarık sistemleri gelişme göstermiştir. Travertenlerin bu kısımlarında, çeşitli çözümle şekillerin yanında bloklar halinde kopmalar meydana gelmiştir.

Büyük boyutlara ulaşmış bulunan traverten depolarını, yakın bir geçmişin eseri olarak kabul etmek mümkün değildir. Bunların oluşumu muhtemelen Kuaterner başlarında ve belki de Pliosen'den itibaren başlamıştır.

Ekseriya beyaz rengin hakim olduğu, yer yer yeşil, sari ve kırmızı renklerin bulunduğu güncel traverten oluşumları da görülmektedir. Özellikle Kırk Damla kaynaklarının sıralandığı yaklaşık 40-50 m.lik sırt boyunca görülen travertenler, farklı renkleriyle dikkati çekmekteydi (Foto:1).

Diğer bir oluşum da Kırk Damla kaynaklarının 50 m. kadar kuzeydoğusunda yer alan Sıra kaynaklarında görülmektedir. Ancak bunun önemi Kırk Damla travertenleri kadar fazla değildir. Doğal bir güzellikte sahip olan travertenler, termal kaynakların önemin bir hale getirmektedir.

Termal Suların Kullanım Alanları

a) Kaplica Tesisleri: Urganlı termal kaynaklarından, Osmanlı İmparatorluğu'nun gelişme döneminde beri kaplica olarak yararlanıldığı tarihi kayıtlardan anlaşılmaktadır. Gökçen (1946), Dilşikar Hatun'un Urganlı köyünde bir hamam
Foto:1- Kırk Daşla kaynakları kesiminde görülen güncel travertenler.
Photo:1- The actual travertines which is see at the Kırk Daşla springs section

Foto:2- Kaplıca tesislerinden bir görünüm.
Photo:2- A view of thermal spring facilities.
yaptırdığını ve bunun için biri naldant öteki berber olmak üzere Urganlı köyünde bulunan iki dükkanı vakfettiğini (H.987, M. 1579) belirtmektedir.11

b) İçme: Kaplıca tesislerinin yaklaşık 300 m. güneybatısında yer alan Aci-su çeşmesinden içme olarak yararlanılmaktadır. Ancak, burada yer alan çeşmenin su yolu ve havuzu hijyenik şartlara uygun değildir.

e) Diğer Kullanım Alanları: Kaplıca tesislerinin güneydoğusunda eski bir değişimden su yolu ait yapıların görülmeleri oldukça enteresandır. Bu su yolu-

11- Gökcen, I.,-1946: Manisa tarihinde vakıflar ve hayır (H. 954-1060). Manisa Halkevi yay. sayı. 18, s. 74-78, İstanbul.
12- Evliya Çelebi, Seyahatnamesi, Üçdal neşriyat, cit. 8, s. 521, İstanbul, 1985.
* Evliya Çelebi'nin sözünü ettiği kubbe ve havuzların, yukarıda belirtilen hamama ait olması çok muhtemeldir.
** Gökcen (1950), Karaitlının, ilica kazasına bağlı bir köy yerleşmesi olduğunu kaydetmektedir (Gökcen, I.,-1950: Tanıtı Şarhan köyleri, Berisoy Basimevi, s. 40, İstanbul). Bugünkü kaynakların 5 km., Gediz nehrinin ise 1.5 km. kadar güneydoğusunda Karaköy bulunmaktadır.
nun uzanışından, deformenin kaynak sulariyla çalıştığı anlaşılmıştır. Ancak burada, 15 m. eninde, 40 m. boyunda ve yaklaşık 2 m. derinliğinde olan bir havuzda toplanan kaynak suları, 7-8 m. kadar düşüş yaptığı sonra deformine ulaşarak deformenin çalışmasını sağlayarak bir sistem takip edilmiştir.

Termal sular, temiz ve ucuz bir enerji kaynağı olarak da ayrı bir öneme sahiptir. Urganlı termal kaynaklarında verimin geliştirilmesi halinde, bazı yerleşim ünitelerinin ışına ve sıcak su ihtiyaçlarının temin edilmesi mümkündür. Bu yerleşim ünitelerinin başlıcaları, Yenicambazlı (200 m.), Akköy (1.5 km.), Musulca (5 km.) ve Urganlı köyü (6 km.) dır. Bu hizmetten yararlanacak toplam nüfus sayısı da on binin üzerinde olacaktır.

Sonuç, Sorunlar ve Öneriler

6. Urganlı kaplıcalar çevresinde, geçmişten gelen tarihi Urganlı hamamı ve
Foto:3- Greenhouses, which are ready to be a part of economy.

Photo:4- One of the temporary pools which are opened on different parts of the spring area.

Foto:4- Kaynak sahasının çeşitli kesimlerinde açılmış eğreti havuzlardan biri.
su değişirmedi bulunmamaktadır. Ancak bu tesisler bakımısızlıkta yılmak üzere- dir. Söz konusu bu eserlerin restore edilerek, tarihi turizm değerleri yeniden kazandırılmalıdır.

7-Kaynak sularından yararlanılmak üzere, seralar yapılmıştır. Ancak büyük yatırımlar yapılırak kurulan bu seralar ahlak durumdadır. Seraların işletmeeye açılmasi, söz konusu ekonomik kaybi önleyecektir.

8-Kaynak sahasonunun yakınında bulunan yerleşim ünitelerinin ısınma ihtiyaçlarının temini için yeterli termal su potansiyeli vardır. İhtiyaç halinde, yapılacak sondajlarla termal suyun miktarı da artırılabilir.

Urganlı termal kaynakları, sahip olduğu potansiyelin iyi değerlendirilmiş ve sorunların çözümlenmesi halinde bölgenin turizmine önemli ölçüde katkıda bulunacak ve çeşitli kazandırmış olacaktır.

Katkı Belirtme

Kaynak yerlerinin belirlenmesinde yakın ilgi ve yardımlarını gördüğüm, Muhsin Çavdar, Murat Efe, Ayhan Bal ve Sezayi Yıldırım'a teşekkür bir borç bilirm.