THE EFFECT OF GENETIC FACTORS ON SPORTIVE PERFORMANCE

Onur EROĞLU, Raif Zileli
3.053 1.454

Abstract


Sportive performance may be describe as all of the efforts put forth to succeed during fulfilling an obligatory athletic duty. One of the most important factors that affect sportive performance is genetic differences. Among these, mutations, polymorphism, epigenetic factors and chimerism lead. Mutations are permanent changes in genetic build and seen less than 1% of population. On the other hand, polymorphisms are seen more than 1% of population and are the existence of two or more different phenotype in the same kind of population. Epigenetic factors in which there is no change in DNA chain, while at the same time, it can change gene activation. However, chimerism is a single organism that is composed of two or more different populations of genetically distinct cells that originated from different zygotes involved in pregnancy. As a conclusion, it is found out that sportive performance may change due to the individuals’ phenotype feature changes caused by differences in genetic substructure.

Keywords


Sportive Performance; Genetic; Mutation;

Full Text:

PDF (Türkçe)


DOI: http://dx.doi.org/10.18826/ijsets.65225

References


Alfred, T., Ben-Shiomo, Y., Cooper, R., Hardy, R., Cooper, C., Deary, I.J., et al. (2011). ACTN3 Genotype, Athletic Status, and Life Course Physical Capability: Meta-Analysis of the Published Literature and Findings from Nine Studies. Hum Mut., 32:1008–1018.

Alibegovic, A.C., Sonne, M.P., Hojbjerre, L., et al. (2010). Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am J Physiol Endocrinol Metab., 299:e752–63.

Alvarez, R., Terrados, N., Ortolano, R., et al. (2000). Genetic variation in the renin-angiotensin system and athletic performance. Eur J Appl Physiol., 82: 117-120.

An, P., Teran Garcia, M., Rice, T., et al. (2005). Genome-wide linkage scans for prediabetes phenotypes in response to 20 weeks of endurance exercise training in non-diabetic whites and blacks: the HERITAGE Family Study. Diabetologia, 48:1142-1149.

Atasoy S. (2013). Aynı bedende farklı DNA’lar. http://www.hurriyet.com.tr/yazarlar/4912171.asp

Bayraktar, B., Kurtoğlu M. (2009).Sporda Performans, Etkili Faktörler, Değerlendirilmesi ve Artırılması. Klinik Gelişim, 22(1): 16-24.

Barres, R., Yan, J., Egan, B., et al. (2012). Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metabolism, 15:405–11.

Bertram, J. (2000). The molecular biology of cancer. Mol. Aspects Med., 21 (6): 167–223.

Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev. (16): 6–21.

Bouchard, C., Chagnon, M., Thibault, M.C., et al. (1989). Muscle genetic variants and relationship with performance and trainability. Med Sci Sports Exerc., 21:71-77.

Calvo, J.A., Daniels, T.G., Wang, X., et al. (2008). Muscle-specific expression of PPAR{gamma} coactivator-1{alpha} improves exercise performance and increases peak oxygen uptake. J Appl Physiol., 104:1304-1312.

Chandramohan, Y., Droste, S.K., Arthur, J.S, et al. (2008). The forced swimming-induced behavioral immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress activated kinase signaling pathway. Eur J Neurosci., 27: 2701–13.

Chuang, J.C., Johns, P.A.(2007). Epigenetics and microRNAs. Pediatr Res. 61(5):24R-29R.

Collins, M., Renault, V., Grobler, L.A., et al. (2003). Athletes with exercise associated fatigue have abnormally short muscle DNA telomeres. Med Sci Sports Exerc., 35(9):1524-8.

Cotman, C.W., Engesser-Cesar, C. (2002). Exercise enhances and protects brain function. Exerc Sport Sci Rev., 30: 75–9.

Cieszczyk, P., Maciejewska, A., Sawczuk, M.(2009). Gene Doping in Modern Sport. JBE. 5,1.

De la Chapelle. A., Traskelin, A.L., Juvonen, E. (1993). Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci U S A, 90(10):4495-9.

Echegaray, M., Rivera, M.A. (2001). Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance: genetic and molecular evidence. Sports Med., 31:919-934.

Egger, G., Liang, G., Aparicio, A. and Jones, P.A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, (429):457–463.

Fraga, M.F., Ballestar, E., Paz, M.F., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA., 102:10604–9.

Gayagay, G., Yu, B., Hambly, B., et al. (1998). Elite endurance and the ACE I allele-the role of genes in athletic performance. Hum Genet, 103:48-50.

Girgenrath, S., Song, K., Whittemore, L.A. (2005). Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow- and fast-type skeletal muscle. Muscle Nerve. 31: 34–40.

Graves, R. (1955). The Greek Myths. Baltimore: Penguin, section. 75.b, pp 252–56.

Gunel, T., Gumusoglu, E., Hosseini, M.K., Yilmazyildirim, E., Dolekcap, I., Aydinli, K. (2014). Effect of angiotensin I-converting enzyme and α-actinin-3 gene polymorphisms on sport performance. Mol Med Rep., 9(4):1422-6.

Haroon, Z.A., Amin, K., Jiang, X., Arcasoy, M.O. (2003). A novel role for erythropoietin during fibrin-induced wound healing response. Am J Pathol, 163(3):993-1000.

Hautala, A.J., Rankinen, T., Kiviniemi, A.M., et al. (2006). Heart rate recovery after maximal exercise is associated with acetylcholine receptor M2 (CHRM2) gene polymorphism. Am J Physiol Heart Circ Physiol., 291:H459-H466.

He, Z., Hu, Y., Feng, L., et al. (2007). NRF2 genotype improves endurance capacity in response to training. Int J Sports Med., 28:717-721.

Henderson, J., Withford-Cave, J.M., Duffy, D.L., et al. (2005). The EPAS1 gene influences the aerobic-anaerobic contribution in elite endurance athletes. Hum Genet., 118:416-423.

Heyn, H., Li, N., Ferreira, H.J., et al. (2012). Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA., 109: 10522–7.

Hillman, C.H., Erickson, K.I., Kramer, A.F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci., 9:58–65.

Homer, Iliad. 6.179–182.

Homer, Iliad. 16.328–329.

Jenuwein, T. & Allis, C. D. (2001). Translating the histone code. Science (293): 1074–1080.

Kerenyi, K. (1959). The Heroes of the Greeks. London and New York: Thames and Hudson.

Kim, D.H., Saetrom, P., Snøve, O. Rossi, J.J.(2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci. 105: 16230-35.

Khoschnau, S., Melhus, H., Jacobson, A., et al. (2008). Type I collagen {alpha}1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. Am J Sports Med. 36 (12):2432-6.

Kostek, M.C., Delmonico, M.J., Reichel, J.B., et al. (2005). Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults. J Appl Physiol., 98:2147-2154.

Loewe. L., Charlesworth. B. (2006). Inferring the distribution of mutational effects on fitness in Drosophila. Biol Lett., 2 (3): 426–30.

Lucia, A., Gomez-Gallego, F., Barroso, I., Rabadan, M., Bandres, F., San Juan, A.F., Chicharro, J.L., Ekelund, U., Brage, S., Earnest, C.P., Wareham NJ & Franks PW (2005). PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J Appl Physiol, 99: 344–348.

Marcell, T.J., Hawkins, S.A., Tarpenning, K.M., ve ark. (2003). Longitudinal analysis of lactate threshold in male and female master athletes. Med Sci Sports Exerc.,35(5):810-7.

Mason, S.D., Rundqvist, H., Papandreou, I., et al. (2007). HIF-1alpha in endurance training: suppression of oxidative metabolism. Am J Physiol Regul Integr Comp Physiol, 293:R2059-R2069.

McGee, S.L., Fairlie, E., Garnham, A.P., et al. (2009). Exercise-induced histone modifications in human skeletal muscle. J Physiol., 587: 5951–8.

McPherron, A.C., Lawler, A.M., Lee, S.J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 387:83–90.

Mokone, G.G., Gajjar, M., September, A.V., et al. (2005). The guanine-thymine dinucleotide repeat polymorphism within the tenascin-C gene is associated with Achilles tendon injuries. Am J Sports Med., 33:1016-1021.

Mokone, G.G., Schwellnus, M.P., Noakes, T.D., Collins, M. (2008). The COL5A1 gene and Achilles tendon pathology. Scand J Med Sci Sports, 2006;16:19-26.

Montgomery, H., Clarkson, P., Barnard, M., et al. (1999). Angiotensin converting-enzyme gene insertion/deletion polymorphism and response to physical training. Lancet, 353: 541-545.

Montgomery, H.E., Marshall, R., Hemingway, H., et al. (1998). Human gene for physical performance. Nature, 393:221-222.

Moore, G. E., Shuldiner, A. R., Zmuda, J. M., Ferrell, R. E., McCole, S. D. & Hagberg, J. M. Obesity gene variant and elite endurance performance. Metabolism, 50, 1391–1392.

Murell, A., Rakyan, V.K., Beck, S. (2005). From genome to epigenome. Human Mol. Gen., 14, (1): R3-R10.

Myerson, S., Hemingway, H., Budget, R., et al. (1999). Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol., 87(4): 1313-1316.

Nakajima, K., Takeoka, M., Mori, M., et al. (2010). Exercise effects on methylation of ASC gene. Int J Sports Med., 31:671–5.

Nitert, M.D., Dayeh, T., Volkov, P., et al. (2012). Impact of an exercise Intervention on DNA methylation in skeletal muscle from first degree relatives of patients with type 2 diabetes. Diabetes, 61:3322–32.

Nottke, A., Colaiácovo, M.P., Shi, Y. (2009). Developmental roles of the histone lysine demethylases. Development, 136 (6): 879–89.

O'Connell, K., Posthumus, M., Collins, M. (2011). COL6A1 gene and Ironman triathlon performance. Int. J. Sports Med., 32(11):896-901.

Orysiak, J., Busko K., Michalski R., Mazur-Różycka, J. Gajewski, J., Malczewska-Lenczowska, J., Sitkowski, D., Pokrywka, A. (2014). Relationship between ACTN3 R577X polymorphism and maximal power output in elite Polish athletes. Medicina, 50(5): 303–308.

Philip, H.(2011). Genetics of Populations. Jones & Bartlett Learning. pp. 104.

Podewils, L.J., Guallar, E., Kuller, L.H., et al. (2005). Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cognition Study. Am J Epidemiol., 161: 639–51.

Posthumus, M., Schwellnus, M.P., Collins, M. (2011). The COL5A1 gene: a novel marker of endurance running performance. Med. Sci. Sports Exerc., 43(4):584-9.

Prior, S.J., Hagberg, J.M., Paton, C.M., et al. (2006). DNA sequence variation in the promoter region of the VEGF gene impacts VEGF gene expression and maximal oxygen consumption. Am J Physiol Heart Circ Physiol., 290:H1848-H1855.

Rankinen, T., Church, T., Rice, T., Markward, N., Leon, A. S., Rao, D. C., Bouchard, C. (2007). Effect of endothelin 1 genotype on blood pressure is dependent on physical activity or fitness levels. Hypertension, 50 (6), 1120-1125.

Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447 (7143): 425–32.

Rico-Sanz, J., Rankinen, T.,Joanisse, D.R., et al. (2003). Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family Study. Physiol Genomics, 14:161-166.

Rodenhiser, D., Mann, M. (2006). Epigenetics and human disease: translating basic biology into clinical applications. CMAJ, 174(3): 341-348.

Ronn, T., Volkov, P., Davegardh, C., et al. (2013). A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet., 9:e1003572.

Rosenfeld, J.A., Wang, Z., Schones, D.E., Zhao, K., DeSalle, R., Zhang, M.Q. (2009). Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics, 10: 143.

Rubio, J.C., Perez, M., Mate Munoz, J.L., et al. (2008). AMPD1 genotypes and exercise capacity in McArdle patients. Int J Sports Med., 29:331-335.

Saetrom, P., Snøve, O., Rossi, J.J. (2007). Epigenetics and microRNAs. Pediatr Res. 61:17R-23R.

Santiago, C., Ruiz, J.R., Buxens, A., Artieda, M., Arteta, D. (2011). Trp64Arg polymorphism in ADRB3 gene is associated with elite endurance performance. Br J Sports Med., 45:2 147-149.

Saunders, P.U., Pyne, D.B., Telford, R.D., Hawley, J.A. (2004). Factors affecting running economy in trained distance runners. Sport Med., 34:465–85.

Sawyer, S.A., Parsch, J., Zhang, Z., Hartl, D.L. (2007). Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proc. Natl. Acad. Sci. U.S.A., 104 (16): 6504–10.

Schuelke, M., Wagner, K.R., Stolz, L.E., Hubner, C., Riebel, T., et al. (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 350:2682–2688.

Siren, A.L., Fratelli, M., Brines, M., Goemans, C., Casagrande, S., Lewczuk, P., et al.(2001). Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA, 98(7): 4044-9.

Smith, J.A., Kohn, T.A., Chetty, A.K., et al. (2008). CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the Glut4 gene. Am J Physiol Endocrinol Metab., 295: E698–704.

Süel, E., Pehlivan, A. (2015). Angiotensin Dönüştürücü (Converting) Enzim (ACE) Gen Polimorfizminin Elit Basketbolcu ve Voleybolcularda Karşılaştırılması. Uluslararası Spor, Egzersiz ve Antrenman Bilimleri Dergisi, 1(1): 40-50.

Strain, L., John, C.S., Mark, P.R., David., T. Bonthron. (1998). A True Hermaphrodite Chimera Resulting from Embryo Amalgamation after in Vitro Fertilization. The New England Journal of Medicine, 338 (3): 166–169.

Tanaka, M., Hadjantonakis, A.K., Nagy, A. (2001). Aggregation chimeras. Combining ES cells, diploid and tetraploid embryos. Methods in molecular biology, 158:135–54.

Taylor, R.R., Mamotte, C.D., Fallon, K., et al. (1999). Elite athletes and the gene for angiotensin-converting enzyme. J Appl Physiol., 87: 1035- 1037.

Unal, M., Ozer Unal, D. (2004). Gene Doping in Sports. Sports Med., 34, 357-362.

Wagoner, LE., Craft, L.L., Zengel, P., McGuire, N., Rathz D.A., Dorn, G.W., Liggett, S.B. (2002). Polymorphisms of the beta1-adrenergic receptor predict exercise capacity in heart failure. Am. Heart J., 144(5):840-6.

Weinberg, R.A. (2013). The biology of cancer. 2nd edition, Garland Science, Taylor & Francis Group, LLC.

Weislo, L. (2012). Index of Lance Armstrong doping allegations over the years. Cyclingnews. Future Publishing Limited. Retrieved 2012-08-24.

Wells, D.J.(2008). Gene Doping: the Hype and the Reality. British Journal of Pharmacology, 154, 623–631.

Williams, A.G., Rayson, M.P., Jubb, M., et al. (2000). The ACE gene and muscle performance. Nature, 403: 614.

Wolfarth, B., Rankinen, T., Mu¨hlbaur, S., Scherr, J., Boulay, M. R., Pe´russe, L. et al. (2007). Association between a b2-adrenergic receptor polymorphism and elite endurance performance. Metab. Clin. Exp., 56, 1649–1651.

Yang, N.,MacArthur, D.G., Gulbin, J.P., Hahn, A.G., Beggs, A.H., Easteal, S., & North, K. (2003). ACTN3 Genotype Is Associated with Human Elite Athletic Performance. Am J Hum Genet. 73(3): 627–631.

Zhou, D.Q., Hu, Y., Liu, G., Gong, L., Xi, Y., Wen, L. (2006). Muscle-specific creatine kinase gene polymorphism and running economy responses to an 18-week 5000-m training programme. Br J Sports Med., 40:988-991.






Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN: 2149-8229